Giant Magellan Telescope Wavefront Control Development Status

Antonin Bouchez

Outline

- Introduction
- Wavefront Control
- Recent Progress
 - Adaptive Secondary Mirror
 - Active Optics & Phasing
 - Ground Layer AO
 - Natural Guide & Laser Tomography AO
- Project Status
- Summary

Introduction Partnership & Scientific Mission

Partnership

- Australian National U.
- Astronomy Australia Limited
- Carnegie Institution
- Harvard U.
- Korean Astronomy and Space Science Institute

Scientific Mission

- Contemporary Science Goals
- Synergy with other facilities
- Discovery Space
 - Increased sensitivity (∝D² to ∝D⁴)
 - Increased angular resolution ($\propto\lambda/D$)
 - Wide field field of view and multi-object capabilities

- São Paolo Research Foundation
- Smithsonian Institution
- Texas A&M U.
- U. Arizona
- U. Chicago
- U. Texas

Introduction Site

<u>Cerro Las Campanas</u> *Telescope, Summit Offices*

Support Site #1 Labs, workshops

e 2017

Support Site #2 Dorms, dining, recreation

Adaptive Optics for Extremely Large Telescopes 5

Credit: Ricardo Alcagaya

4

Introduction Optical Design and Operating Modes

GM⁻

Telescope Optical Design

- 25.4 m aplanatic Gregorian design
- M1: 7 x 8.4 m segments
- M2: 7 x 1.05 m segments
 - Fast-steering M2 (commissioning)
 - Adaptive M2 (standard operations)
- Deployable Optics
 - M3 (3' FOV)
 - ADC/Corrector (20' FOV)

Wavefront Control Modes

- Natural Seeing (2.0-5.0 µm WFE)
- Ground-layer AO (0.5-1.0 µm WFE)
- Laser Tomography AO (290 nm WFE)
- Natural Guide Star AO (185 nm WFE)

Wavefront Control Team

Project Office – Management, systems engineering

Antonin Bouchez, Rodolphe Conan, Fernando Quirós-Pacheco, Robert Bernier, Hugo Chiquito, Lee Dettmann, Paul Gardner, Andrew Rakich, Wylie Rosenthal, Patricio Schurter, José Soto

Smithsonian Astrophysical Observatory – Active optics, phasing

Brian McLeod (PI), Dan Catropa, Dan Durusky, Tom Gauron, Jan Kansky, Derek Kopon, Ken McCracken, Stuart McMuldroch, William Podgorski

Australian National University – LTAO subsystems

Francois Rigaut (PI), Francis Bennet, Celine d'Orgeville, Brady Espeland, Rusty Gardhouse, Nicolas Paulin, Piotr Piatrou, Ian Price, Kristina Uhlendorf

INAF-Arcetri – NGAO subsystems

Simone Esposito (PI), Enrico Pinna, Guido Agapito, Jacopo Antichi, Carmelo Arcidiacono, Marco Bonaglia, Valdemaro Biliotti, Runa Briguglio, Lorenzo Busoni, Luca Carbonaro, Luca Fini, Alfio Puglisi, Armando Riccardi, Marco Xompero

University of Arizona – Conceptual design, calibration systems

Phil Hinz (PI), Guido Brusa, John Codona, Tom Connors, Oli Durney, Michael Hart, Russell Knox, Tom McMahon, Manny Montoya, Vidhya Vaitheeswaran, Ping Zhou, Jim Burge, Chunyu Zhao, Scott Benjamin, Brian Cuerden

ADS and Microgate – Adaptive Secondary Mirror

Daniele Gallieni (PI), Roberto Biasi (PI), Mario Andrighettoni, Gerald Angerer, Andrea Atzeni, Mauro Manetti, Dietrich Pescoller, Paolo Lazzarini, Marco Mantegazza, Matteo Tintori, Lorenzo Crimella

Consultants

Marcos van Dam, D. Scott Acton, Edward Kibblewhite, Fernando Santoro

Degrees of Freedom

- M1: 336 DOF, 2 Hz bandwidth
- M2: 4704 DOF, 800 Hz bandwidth
- M3: 3 DOF, 1 Hz bandwidth
- Mount: 3 DOF, 1.8 Hz bandwidth

Etalon AG Multiline metrology system

Degrees of Freedom

- M1: 336 DOF, 2 Hz bandwidth
- M2: 4704 DOF, 800 Hz bandwidth
- M3: 3 DOF, 1 Hz bandwidth
- Mount: 3 DOF, 1.8 Hz bandwidth

<u>Sensors</u>

Telescope Metrology System

Degrees of Freedom

- M1: 336 DOF, 2 Hz bandwidth
- M2: 4704 DOF, 800 Hz bandwidth
- M3: 3 DOF, 1 Hz bandwidth
- Mount: 3 DOF, 1.8 Hz bandwidth

<u>Sensors</u>

- Telescope Metrology System
- Acquisition, Guiding, and WFS System (AGWS)

Degrees of Freedom

- M1: 336 DOF, 2 Hz bandwidth
- M2: 4704 DOF, 800 Hz bandwidth
- M3: 3 DOF, 1 Hz bandwidth
- Mount: 3 DOF, 1.8 Hz bandwidth

<u>Sensors</u>

- Telescope Metrology System
- Acquisition, Guiding, and WFS System (AGWS)
- Natural Guide Star WFS
- Laser Tomography WFS

Diffraction-Limited AO WFS

On-Instrument WFS

Degrees of Freedom

- M1: 336 DOF, 2 Hz bandwidth
- M2: 4704 DOF, 800 Hz bandwidth
- M3: 3 DOF, 1 Hz bandwidth
- Mount: 3 DOF, 1.8 Hz bandwidth

<u>Sensors</u>

- Telescope Metrology System
- Acquisition, Guiding, and WFS System (AGWS)
- Natural Guide Star WFS
- Laser Tomography WFS

Diffraction-Limited AO WFS

- On-Instrument WFS
- Edge Sensors

Az/EI/Ro

Degrees of Freedom

- M1: 336 DOF, 2 Hz bandwidth
- M2: 4704 DOF, 800 Hz bandwidth
- M3: 3 DOF, 1 Hz bandwidth
- Mount: 3 DOF, 1.8 Hz bandwidth

Sensors

- **Telescope Metrology System**
- Acquisition, Guiding, and WFS System (AGWS)
- Natural Guide Star WFS
- Laser Tomography WFS
- Diffraction-Limited AO WFS
- **On-Instrument WFS**
- Edge Sensors

Control System

- Wavefront Control Kernel
- **Pointing Kernel**

Telescope Control System

Pointing Kernel Commands

Subsystem Design and Prototyping

- Adaptive Secondary Mirror
- Acquisition, Guiding, and WFS System
- Natural Guide Star WFS optical pyramid
- On-Instrument Wavefront Sensor deformable mirror
- Calibration and testbed facilities

Simulations and Requirements

- Active Optics
- Ground-Layer AO
- Telescope Phasing

Adaptive Secondary Mirror Detailed Design

- Currently in detailed design by AdOptica
- 672 actuators per segment, 66 μ m useable stroke, \leq 650 μ s rise time
- 7 segments are now supported on a single cell with vibration isolation
- Returned to an open-back Zerodur reference body, radial flexure support (based on VLT DSM design)

Tuesday poster - GMT M2 units positioners system design and analysis, Daniele Gallieni

Adaptive Secondary Mirror Prototypes

- Edge actuators and armatures
- Optical edge sensors
- Face sheet central flexure
- P72 system-level prototype
 - Evaluate dynamic performance
 - Verify electronics design
 - Testbed for software and firmware

GMT P72 reference body

GMT prototype edge actuator

LBT P45 system prototype

Acquisition, Guiding, and WFS System Functions & Visible Channel

- Acquisition
- Guiding and Segment Tip-Tilt (NS & GLAO)
- Collimation and M1 figure control
- Ground-layer wavefront sensing (GLAO)
- Phasing
- Visible channel:
 - EMCCD camera (Andor or Raptor)
 - 2 imagers, 7-element S-H, or 48x48 S-H
 - WFS: 8x8 pixels/subap. at 196 Hz

Acquisition, Guiding, and WFS System **Dispersed Fringe Sensor**

- Dispersed Fringe Sensor
 - Uses First Light C-RED One camera
 - 12 1.5 m subapertures across segment gaps
 - 6 calibration apertures measure systematic errors
 - Readout at 50 Hz to freeze turbulence
- Challenges
 - Prism array manufacturing
 - Detector dark current & thermal background

Monday poster - Design and expected performance of the GMT's GLAO and phasing sensors, Brian McLeod

DFS prism array

Zero-deviation prism

Active Optics and Phasing Control Strategy

- M1 segment tilt, corrected by M2 segment tilt, leads to field-dependent segment phase piston error
- M1 borosilicate segments, we must measure and control segment phase piston every 30 s, as part of the Active Optics control loop
- Continuous field-dependent aberration alias into piston measurements
 - This error term is eliminated by combining the AGWS WFS & DFS measurements in a single reconstructor for M1 position and figure
- In diffraction-limited modes, on-axis AO control must be included in the active optics reconstructor calculation

26 June 2017

Active Optics and Phasing Performance Simulations

Monday poster - Integrated Modeling and Adaptive Optics, Rod Conan Friday talk - GMT Phasing System Algorithms and Performance Simulations, Fernando Quirós-Pacheco

Active Optics and Phasing Dispersed Fringe Sensor Prototypes

Infrared integrating phasing sensor prototype: July 2012

Visible high-speed phasing sensor prototype: Dec. 2015

Infrared high-speed phasing sensor prototype: Planned Mar. 2018

3rd Generation phasing prototype

- Test all aspects of the final optical design
- Test C-RED camera
- Validate calibration techniques

Tuesday poster - Phasing the GMT with a next generation e-APD DFS: design and on-sky prototyping, Derek Kopon

Ground-Layer AO Control Strategy

- Most GLAO systems reconstruct each WFS separately and average the results
- Tomographic GLAO provides higher performance when using NGS
 - Reconstruct wavefront for each WFS
 - Estimate wavefront for each "science target"
 - Average "science target" wavefronts
 - Use pseudo-open loop control

Ground-Layer AO Performance

Adaptive Optics for Extremely Large Telescopes 5

Diffraction-Limited AO AO Wavefront Sensors

Laser Tomography WFS

- Designed by the ANU
- 6 60×60 Shack-Hartmann WFS
- Design based on 840×840 pixel NGSD CMOS detectors

Natural Guide Star WFS

- Designed by INAF-Arcetri
- 92×92 pyramid WFS
- Two sensing channels for unambiguous phasing
- Uses 2 OCAM2 EMCCD cameras
- Glass pyramid being prototyped by WZW Optic AG

Diffraction-Limited AO On-Instrument Wavefront Sensors

- Open-loop "MOAO-type" correction of off-axis NGS is a key aspect of the LTAO system design
- ANU has performed a study comparing the performance of 3 deformable mirrors at -40 C
- 2 of 3 evaluated mirrors meet our requirements

Tuesday poster - Deformable mirror characterisation from ambient down to -40C, Francois Rigaut

Project Status Cerro Las Campanas Summit

:::

OHARA

Ber

UA SCIENCE RICHARD F. CARIS MIRROR LAB Steward Observatory

011111

Segment #4

Photos by Ray Bertram

Project Status Construction Contracts

Mount structure procurement

- Competitive preliminary design phase with two vendors
- Down-select for detailed design and fabrication in early 2018

Enclosure construction

- Pier excavation begins Nov. 2017
- Concrete package Sep. 2018

Instrument Development

Instrument	Description	Mode	Stage
GCLEF	Vis. Echelle spectrograph	NS,NGAO	Detailed Design
GMACS	Vis. Wide-field MOS	NS,GLAO	Prelim. Design
GMTIFS	nIR Single-object IFU	NGAO,LTAO	Prelim. Design
GMTNIRS	nIR Echelle spectrograph	NGAO,LTAO	Tech. Dev.
ComCam	Vis. Imaging camera	NS,GLAO	Concept Design
MANIFEST	Vis. Robotic fiber feed	NS,GLAO	Tech. Dev.

Project Status Schedule

Summary

- Focus over past 2 years has been on
 - Adaptive Secondary Mirror design & prototyping
 - AGWS design & prototyping
 - High fidelity active optics, phasing, and GLAO simulations
- We now have high confidence in the control of a doubly-segmented active / adaptive telescope
- We expect to begin detailed design studies of AO subsystems in 2018

Backup Slides

30

Sensors Telescope Metrology System

Degree of Freedom	Requirement (1 o)	Design Estimate (1 σ)
M1 x,y	\leq 75 μ m	1.4 μm
M1 z	≤160 µm	0.87 µm
M1 Rx, Ry	≤ 0.38 arcsec	0.068 arcsec
M1 Rz	\leq 40 arcsec	0.054 arcsec
M2 x,y	\leq 75 μ m	8.2 μm
M2 z	≤170 μm	1.5 μm
M2 Rx, Ry	\leq 3.0 arcsec	0.64 arcsec
M2 Rz	\leq 330 arcsec	3.0 arcsec

Requirement based on > 99% probability of successful AGWS capture

- Etalon AG Multiline absolute laser metrology system
- Simultaneous baselines between M1 segments, M2 segments, M1-M2, and M1-GIR
- Initial design estimates meet requirements with \geq 5x margin

Diffraction-Limited AO Laser Guide Star Facility

- Designed by the ANU
- Side-launch geometry
- 6 independent laser projection assemblies
 - Toptica/MPB fiber Raman laser, simple BTO, 38 cm TNO launch telescope
- Design copies that of the VLT 4LGSF

Image Quality Requirements NGAO & LTAO Requirements

ID	Requirement Name	Requirement	λ (μm)	Sky Coverage	Conditions
SCI-1882	NGAO High Contrast	Contrast ≥ 10 ⁵ @ 4λ/D	3.77	V=8 guide star	
SCI-1883	NGAO High Strehl	Strehl ≥ 0.75	2.18	V=8 guide star	Zenith angle 15°
SCI-1884	LTAO Mod. Sky Coverage	Strehl ≥ 0.30	1.65	≥ 20% at <i>b</i> =90°	$r_0 = 0.16 \text{ m} (50^{\text{th}} \text{ percentile})$
SCI-1885	LTAO High Sky Coverage	EE(50 mas) ≥ 0.40	2.18	≥ 50% at <i>b</i> =90°	Wind 6.4 m/s (50 th percentile)
SCI-1886	LTAO On-axis Guide Star	EE(85 mas) ≥ 0.50	2.18	K=15 guide star	

- AO requirements specified in median conditions, but evaluated for 75th percentile wind
- LTAO sky coverage budget allocates sky coverage between AGWS and OIWFS

LTAO sky coverage budget at b=90°

Subsystem	SCI-1884	SCI-1885
AGWS	0.90	0.90
LTWS	1.00	1.00
OIWFS	0.25	0.60
Contingency	0.89	0.93
Sky Coverage	0.20	0.50

Image Quality Requirements NGAO & LTAO Budgets

NGAO & LTAO	N	GAO mode, V	/=8	LTAO mo	ode, 20% sky	/ @ b=	90			Givi i
Wavefront Error Budgets	(Req	uirement / De	esign)	(Req	uirement / Do	esign)		ATATAT		
High-order error [nm RMS]	170 / 107			260 / 255		-				1.174
AO high-order aberrations		108 / 65			202 / 222			NGAO domina	ant erro	ors
Atmospheric fitting			65 / 60			105	/ 105			
Temporal bandwidth			60 / 20			50	/ 50	Atmospheric 1	fitting	
HO WFS measurement	1		55 / 14			50	/ 45		0	
HO aliasing			30 / 10			40	/ 35	Residual wind	shake	
Tomography						100	/ 95			
Focus	4					35	/ 35	Residual vibra	ations	
Dynamic calibration	4					45	/ 45	(not yet estimat		
Atmospheric Segment Piston						100	/ 143	(not yet estimat	eu)	
Telescope Segment Piston	1	45 / 25			93 / 86	4				
AO calibration	4	62 / 62			76 / 74					
NCPA calibration	4		35 / 35			35	/ 35			
LTWS calibration	4		35 / 35			30	/ 30	LTAO dominar	nt error	S
Instrument Window (reflection)	4		20 / 20			20	/ 20			
LGS Dichroic (trans./refl.)	4		20 / 20			20	/ 20	Atmospheric s	seamen	t pisto
Pupil alignment on WFS			25 / <mark>25</mark>			45	/ 41	/ ((1100))110110	oogmon	r pioto
Field-dependent aberrations						30	/ 30	Atmospheric f	fittina	
Uncorrectable telescope aberrations	4	30 / 15			30 / 15	-			itting	
Uncorrectable instrument	4	50 / 50			50 / 50	-		Tomography (arror	
Residual		89 / 132			94 / 50				51101	
Image motion error [mas RMS]	1.85 / 1.37			3.10 / 2.60	0.00 / 0.54	1			amont n	icton
AO Fast Tip-tilt errors	4	1.60 / 1.34	0.50 / 0.40		3.00 / 2.51		1 0 00		ginein p	151011
Tip-tilt measurement	4		0.50 / 0.10			1.00	/ 0.80	- Regidual wing	l abaka	
Tip-tilt temporal bandwidth	4		0.50 / 0.17			1.00	/ 0.80	Residual wind	snake	
Tip-tilt allasing			0.25 / 0.20			0.50	/ 0.40	- Desidual vibre	ationa	
Desidual windebake			1 00 / 0.85			1.50	/ 1.35	Residual vibra	alions	
Residual windshake	1		1.00 / 0.85			1.50	/ 0.90	(not vet estimat	ed)	
	1	0.20 / 0.26	1.00 / 1.00		0.20 / 0.22	1.50	7 1.50	()	,	
AO Slow lip-till errors	1	0.20 / 0.20	0.20 / 0.20		0.20 / 0.23			Telescope Segment Piston	nm RMS	vavefront
Residual autospheric dispersion	1		0.20 / 0.20			0.20		20% sky @ b=-90	Requireme	nt / Desig
CIP rotation error			0.20 / 0.17			0.20	Telescor	2071 Sky (2) D=-50	03 / 86	III / Desigi
Residual		0.88 / 1.24			0.41 / 1.70			S Measurement	00 / 00	50 / 4
Wavelength [um]	1.22	1.65	2.18	1.22	1.65			phen-loon niston accuracy		35 / 3
FWHM [mas]	10.7 / 10.7	14.5 / 14.4	19.0 / 18.9	11.0 / 10.9	14.7 / 14.6	19 :	M1 roc			50 / 4
Strehl ratio	0.40 / 0.67	0.60 / 0.81	0.75 / 0.88	0.11/0.13	0.30 / 0.33	0.50	M2 res	sidual vibration		50 / 5

Ensquared energy in 50x50 mas

AO dominant errors

- tmospheric fitting
- esidual wind shake
- esidual vibrations not yet estimated)

O dominant errors

- tmospheric segment piston
- tmospheric fitting
- omography error
- elescope segment piston
- esidual wind shake
- esidual vibrations not yet estimated)

		0.20 / 0.20			0.20			
		0.20 / 0.17	1 6		0.20	20% sky @ <i>b</i> =-90	Requireme	nt / Design
				0.60 / 0.60		Telescope Segment Piston	93 / 86	
	0.88 / 1.24			0.41 / 1.70		AGWS Measurement		50 / 45
1.22	1.65	2.18	1.22	1.65	2	ASM open-loop piston accuracy		35 / 33
10.7 / 10.7	14.5 / 14.4	19.0 / 18.9	11.0 / 10.9	14.7 / 14.6	19.2	M1 residual vibration		50 / 44
0.40 / 0.67	0.60 / 0.81	0.75 / 0.88	0.11/0.13	0.30 / 0.33	0.50	M2 residual vibration		50 / <mark>50</mark>
0.37 / 0.58	0.48 / 0.61	0.53 / 0.61	0.14 / 0.15	0.28 / 0.29	0.40	/ 0.40		

Laser Tomography AO Control Loops

Control Loop	Rate	Sensor	Actuator
On-axis Tomography	500 Hz	LTWS	ASM
Off-axis Tomography	500 Hz	LTWS	OIWFS DM
Uplink Tip-tilt	500 Hz	LTWS	LGS
Fast Global Tip-tilt	≤1 kHz	OIWFS TT	ASM
LTAO WFS Focus	10 Hz	OIWFS Foc	LTWS
ASM Offload	1 Hz	ASM	M2 Pos.
On-axis Dynamic Cal.	0.1 Hz	OIWFS WFS	ASM
Off-axis Dynamic Cal.	0.03 Hz	OIWFS WFS	OIWFS DM
Active Optics & Phasing	0.03 Hz	AGWS WFS	M1 Pos., M1 Figure, M2 Pos.
M1 Piston Feed-Forward	500 Hz	M1ES	ASM
M2 Piston Feed-Forward	500 Hz	M2ES	ASM
Mount Guiding	0.03 Hz	AGWS WFS	Az/El
Instrument Pupil Pos.	0.03 Hz	OIWFS WFS	M3
LTAO WFS Rotation	0.03 Hz	LTWS	LTWS Rot.
LTAO Pupil Pos.	0.03 Hz	LTWS	LGS Dichroic
AGWS & GIR Pos.	0.03 Hz	AGWS WFS	AGWS, GIR

Diffraction-Limited AO Performance

M_V	Seeing [arcsec]	Wind case	Controller	Wavefront Error [nm RMS]	S _K [%]
		none	Integrator	120.9	88.5
8	0.63	D0	IIR	116.1	89.3
		C0	IIR	122.8	88.1
		none	Integrator	154.2	82.0
8	1.0	D0	IIR	140.9	84.7
		C0	IIR	156.2	81.6
		none	Integrator	156.4	81.5
12	0.63	D0	IIR	133.4	86.2
		C0	IIR	189.9	74.1

[arcsec]

Galactic Latitude	0°	-30°	-60°	-90°
With OIWFS DM	100	100	78	79
Without OIWFS DM	91	51	31	23

Calibration Systems Wavefront Control Testbed

- Enables integration and testing of ASM, wavefront sensors, and an instrument
- Initially deployed at AdOptica facilities in Italy, then moved to observatory site with ASM