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Reaching the Diffraction Limit of Large Telescopes using Adaptive Optics
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Disturbances affecting the Telescope Resolution
 Atmospheric Turbulences
 Structural Vibrations

Accelerometer-based
Disturbance Feedforward

Observations with Faint Guide Stars
 Long exposure for better Signal-to-Noise-

Ratio
 Adaptive Optics (AO) loop speed is reduced
 High frequency Vibrations are seen at the 

Telescope Mirror (> 5 Hz)
 Classical AO loop is to slow

Adaptive Optics
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Accelerometer-based Disturbance Feedforward Control
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Compensation of the Telescope Vibrations

 Measuring vibrations at relevant telescope mirrors 

with additional accelerometers

 Reconstruction of the Optical Modes influenced 

by Vibrations (Piston, Tip, Tilt Zernike Modes)

 Compensating by  the Tip-Tilt mirror and 

Deformable Mirror

Independent of the Wavefront
Exposure Time

Suppression of
high frequency Vibrations
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1. Methods for Vibration Suppression

2. Simulation Results

3. Conclusion and Outlook
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1. Classical Integration

2. Observer-based
Disturbance Suppression
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Overview Adaptive Optics
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Observer-Based Disturbance Compensation (LQG) for the Tip/Tilt Modes
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Assumptions
 DM ≈ 1 (fast position control)
 2 sample delay of the WFS

Disturbance Modelling
 Atmosphere

 Approximation of the temporal power spectral density by a second order AR model

 Vibrations
 Modal representation of the mechanical system (considering dominant natural 

frequencies)  𝑥 + 2𝑑𝜔0  𝑥 + 𝜔0
2𝑥 = 𝑢

𝑋𝑡 = 𝑎1𝑋𝑡−1 + 𝑎2𝑋𝑡−2 + 𝜖𝑡

u
-
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Accelerometer-based Disturbance Feedforward Control 

Martin Glück 7

Concept
 Measuring Vibrations with 

Accelerometers at Telescope 
structure

 Reconstructing Optical Modes
(Piston, Tip, Tilt, Defocus)
 Different Tip-Tilt Sensitivity 

of each Mirror

 Adding to the Control Input of 
the Adaptive Mirrors (M4, M5)
 Considering time delay
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Reconstruction Algorithms for the Optical Modes
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Challenges

 Online Double Integration of  
Accelerometer Signals
 Unstable

 Time Delay

Reconstruction Methods

 Approximation of a Double Integrator 
by a Bandpass Filter, Böhm[2]

 Disturbance Observer
 Modal Model of the Mechanics
 Luenberger Observer Design

  𝑥 = 𝐴 𝑥 + 𝐿 𝑦 −  𝑦 ,  𝑦 = 𝐶  𝑥
 Adaptive Resonator , Keck[1]

 Using Online Fourier Analysis

 𝜑𝐴𝑅,𝑖 = 𝐴 𝑐𝑜𝑠 𝜔1t + B sin(𝜔1𝑡)

𝜑𝐴𝑅,𝑖 = −
1

𝜔1
2  𝜑𝐴𝑅,𝑖

𝐴 =  
0

𝑡

𝑔(  𝑧𝑖 −  𝑧𝐴𝑅,𝑖) cos 𝜔1𝜏 𝑑𝜏

𝐵 =  
0

𝑡

𝑔(  𝑧𝑖 −  𝑧𝐴𝑅,𝑖) sin 𝜔1𝜏 𝑑𝜏

 𝑥 =
0 1

−𝜔0
2 0

𝑥 +
0
1
𝑢 𝑦 = −𝜔0

2 0 𝑥



University of Stuttgart
Institute for System Dynamics

Comparison of the Reconstruction Methods
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𝜙turb

uFF 𝜙res𝜙cor𝜙res,d = 0 uFB

Schematic View of an Adaptive Optics with an additional DFF
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Comparison of the Disturbance Compensation Methods
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Simulation Parameters
 Wind velocity 10 m/s

 Natural frequenies
at 10 Hz and 13Hz

 Sample Rate Accelerometers 1 kHz

 Disturbance Feedforward Control with 
a Kalman Reconstructor
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Martin Glück 12

1. Methods for Vibration Suppression

2. Simulation Results

3. Conclusion and Outlook
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Simulation Results for a bright Guide Star
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 Bright guide star 10 mag und exposure time  800 Hz

 Typical atmospheric condition 0.8 arcsec

 Exciting the system by varying the natural frequency 0 Hz … 50 Hz
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Simulation Results for a faint Guide Star
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 Faint guide star with 14.6 mag and exposure rate 200 Hz

 Exciting the system by varying the natural frequency 0 Hz … 50 Hz
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1. Methods for Vibration Suppression

2. Simulation Results

3. Conclusion and Outlook
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Outlook
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Conclusion
 High frequency vibrations worsen the performance for 

observations with faint guide stars

 Improving the performance with an Accelerometer-
based Disturbance Feedforward control 

Outlook
 Considering the influence of the actuator dynamics 

(M4, M5)

 Testing Disturbance Feedforward at the LBT
Bild:ESO
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