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ABSTRACT   

"Weighted Fourier Phase Slope" is a centroiding method that operates in the Fourier domain. It directly computes the 

Fourier phase slope at discrete spatial frequencies without the intermediate step of working out the phase, and then applies 

a weight to the slope at each frequency which is application's geometry dependent. The number of spatial frequencies 

involved is a few, and the computational requirement is significantly lesser than for the Cross-Correlation centroiding 

method. The algorithm has been introduced in the OOMAO (Object Oriented Matlab for Adaptive Optics) simulator's 

Shack-Hartmann wavefront sensor object, and its performance compared with Thresholded Centre of Gravity and Cross-

Correlation centroiding methods, for natural guide star open loop compensated adaptive optics systems. These preliminary 

results show a sensitiveness and sky coverage performance similar to Cross-Correlation’s, with an improvement over the 

Thresholded Centre of Gravity of 0.6 to 0.7 in the limiting star magnitude. 
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1. INTRODUCTION  

Shack-Hartmann wavefront sensors (SHWFS) continue to be the most widely employed and to have the most matured 

technology amongst wavefront sensors to be found in astronomy applications. With the advent of Multi Object Adaptive 

Optics (MOAO) systems, which operate in an open loop correction configuration, wavefront sensors are posed with the 

requirement of maintaining their sensitiveness in low light level conditions while sensing a larger Field of View (FoV) than 

in traditional closed loop systems, in order to cope with the uncorrected atmospheric turbulence dynamic range. For 

SHWFS’s, this requirement directly falls over the centroiding method employed to estimate the tilt at the subpupil level 

from the spot’s position at the focal plane image, and therefore justifies the revision of traditional centroiding methods and 

the proposal of new ones. 

Hardware speed and processing capabilities are in continuous growth. Hundreds and even thousands of GFlops of 

processing power of modern GPU’s (Graphical Processing Units), for example, invite us to move from the simple Centre 

of Gravity (CoG) based traditional centroiding methods, which work in the subpupil image domain, towards more robust 

methods that work in transformed domains where denoising filters are more easily applied. 

In this paper we present some preliminary results of the performance of a centroiding method formulated as an optimized 

Bayesian estimator in the Fourier domain, for Shack-Hartmann wavefront sensors. Results are obtained by simulation of 

an open loop configured Adaptive Optics (AO) system in which a Natural Guide Star (NGS) is the sensing light source. Its 

performance is compared with the Thresholded Centre of Gravity (TCoG) and Cross-Correlation (CC) centroiding methods. 

We have called it the Weighted Fourier Phase Slope (WFPS) algorithm. 

2. DESCRIPTION OF THE WEIGHTED FOURIER PHASE SLOPE ALGORITHM 

The formulation of the WFPS has already been presented and validated as a tilt estimation method at the subpupil level of 

SHWFS’s1. Basically, the algorithm first calculates the slopes, or derivatives with respect to both spatial frequency axes, 
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of the image’s Fourier phase, and then averages these slopes with optimized weights in order to obtain the centroid’s 

horizontal and vertical coordinates in the image domain. 

It can be shown that, for a subpupil image Ixy, the following expressions hold for its Fourier phase slopes2, 3: 
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with x and y being the horizontal and vertical coordinates in the image domain, ℱ{·} being the Fourier transform, ωx = 2πfx, 

ωy = 2πfy , fx and fy being the spatial frequencies in the horizontal and vertical axes, respectively, Re{·} being the operation 

of taking the real part and arg(·) being the “unwrapped” phase, such that the result is a continuous function of the spatial 

frequencies. Note that expression (1) allows us to compute the Fourier phase slope of image Ixy, as a negated real part of a 

quotient of Fourier transforms, without the need of explicitly computing the phase and unwrapping it. Taking into account 

that negative slopes imply positive image displacements, and that the discretized versions of the Fourier transforms are in 

practice employed, expression (1) gives place to: 
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with 2D_FFT{} being the bi-dimensional Fast Fourier Transform, and 𝐶𝑘,𝑙
𝑥  and 𝐶𝑘,𝑙

𝑦
 being the horizontal and vertical image 

displacements evaluated at the discretized spatial frequencies determined by the integer k and l indexes. 

For a perfectly symmetric and well sampled spot in a noiseless image and with infinite field of view, the corresponding 

phase in the Fourier domain would be planar, and so, any two entries, one from each of the pair of image displacement 

matrices in expression (2), would define a perfect estimator of the phase tilt in the subpupil. However, for a real non-

symmetric pixelized spot in a noisy image with limited FoV, the same pair of entries would be a noisy estimator of the 

phase tilt, and so the following expression holds: 
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where 𝐶𝑣
𝑥 and 𝐶𝑣

𝑦
 are rearrangements of 𝐶𝑘,𝑙

𝑥  and 𝐶𝑘,𝑙
𝑦  in column vector format, respectively; 𝐶𝑥 and 𝐶𝑦 are the spot’s 

displacement in pixels related to the true* horizontal and vertical phase tilts at the subpupil, respectively; H is an observation 

vector with the same size as 𝐶𝑣
𝑥 or 𝐶𝑣

𝑦
with unity entries; and, finally, 𝐸𝑥 and 𝐸𝑦are error vectors. The size of these vectors 

correspond to the number of selected spatial frequencies, Nf. Assuming Gaussian probability distributions for displacements 

and errors, and disregarding the knowledge of the a priori means of displacements 𝐶𝑥 and 𝐶𝑦, the proposed WFPS 

algorithm is a Bayesian MAP (Maximum a Posteriori) estimator of 𝐶𝑥 and 𝐶𝑦 given by: 
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* “True” tilt at the subpupil is the tilt we are interested in estimating, such as Z-Tilt (Zernike tilt) or G-Tilt (mean of the phase 

gradient). 



𝑉𝐸𝑥  and 𝑉𝐸𝑦  are the covariance matrices of errors 𝐸𝑥 and 𝐸𝑦. Their role is to give more weight to the cleanest or less noisy 

displacement measurements in 𝐶𝑣
𝑥 and 𝐶𝑣

𝑦
. Moreover, they take advantage of the strong correlation of the errors at neighbour 

spatial frequencies to cancel out noise in an optimized manner. Expression (4) can finally be rearranged as weighted 

combinations of the displacements 𝐶𝑘,𝑙
𝑥  and 𝐶𝑘,𝑙

𝑦
, calculated at the different spatial frequencies in the Fourier domain as 

phase slopes: 
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with multiplication in (5) being element-wise. Weight matrices 𝑊𝑘,𝑙
𝑥  and 𝑊𝑘,𝑙

𝑦
 are rearrangements into matrix format, in an 

inverse manner as was done in (3), of weight vectors 𝑊𝑣
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respectively. The values of these weights are calculated in simulations at a subpupil level where the “true” tilt is known. 

The total number of spatial frequencies involved in expression (5), Nf, mainly affects the computational cost of the 

algorithm, and it has also a certain influence over the tilt estimation performance. We have seen that a reasonably good 

performance is achieved with just six spatial frequencies2. By limiting the 2D_FFT’s computation in (2) to just the involved 

spatial frequencies, the computational cost of the WFPS algorithm is one order of magnitude smaller than the one required 

by the CC algorithm2. 

3. CAPACITIES ADDED TO THE OOMAO SIMULATOR  

The Object Oriented Matlab toolbox for Adaptive Optics (OOMAO) is a freely available extension of the Matlab language, 

consisting of a library of Matlab classes oriented towards the numerical modelling of AO systems4. It has been used in the 

present work to simulate the WFPS algorithm performing in a SHWFS of an open loop configured AO system, and to 

compare its sensitivity with other known centroiding methods such as TCoG and CC. 

OOMAO’s object-oriented programming provides it with a modularity that facilitates the change of a particular aspect of 

the wavefront sensing subsystem, such as the centroiding method or the detector’s gain and noise model in the SHWFS. 

Among the implemented classes, the shackHartmann class contains the necessary properties and methods to simulate the 

Shack-Hartmann wavefront sensor. The selection of the centroiding method is done through its properties, and the two 

implemented methods are the TCoG and the Quad Cell (QC). Since a SHWFS is composed basically of a lenslet array and 

a detector, two classes can be found embedded in the shackHartmann class: the lensletArray class, where the number of 

lenslets, number of detector pixels per lenslet, valid lenslets as a function of incident light, and spots size in pixels are 

defined; and the detector class, which implements the detector’s gain and noise model, which consists of adding photonic 

noise to the light, adding a background light, applying a quantum efficiency and adding readout noise. 

In the context of the present work, some features have been added to the shackHartmann class and its embedded detector 

class, necessary to achieve the desired simulation results. These have been the following: 

1. The WFPS algorithm has been implemented in the shackHartmann class, at the dataProcessing method, where all the 

centroiding algorithms are to be found. Public properties wfpsWeightsX and wfpsWeightsY have been included to 

contain the Bayesian weights at the working spatial frequencies for the horizontal and vertical centroids calculation, 

respectively. 

2. The CC centroiding algorithm has been implemented in the shackHartmann class. The correlation reference is the 

diffraction limited image, and is set with the setCorrelationReference method, which should be called after 

propagating a planar wavefront to the SHWFS. The correlation is executed in the Fourier domain, in the 

dataProcessing method. A thresholding can be applied to the correlation figure, through the correlationThreshold 

public property, and finally a centre of gravity is applied to the thresholded correlation figure. Resolution of the 



correlation figure is kept the same as that of the live and reference images; interpolation of the correlation figure does 

not improve centroid estimation when a TCoG is applied to the same. 

3. A gain and noise model of an Electron Multiplication Charge Coupled Device (EMCCD) detector has been 

implemented in the detector class. Figure 1 is a schematic representation of the main blocks in an EMCCD for a gain 

and noise statistical model derivation. The main difference with a Charge Coupled Device (CCD) detector is the 

inclusion of an Electron Multiplication (EM) register before the readout electronics, where the electrons are shifted 

using a higher clock voltage than in the detector array and readout register, in order to create more electrons through 

impact ionization.  

  

Figure 1. Block diagram of an EMCCD detector, from a gain and noise model point of view. 

The employed stochastic model consists of the serial combination of three stochastic processes, corresponding to the 

three blocks in Figure 1: a Poisson process, a gamma process and a normal process5. 

For a mean incident light intensity 𝑛𝑝ℎ in photons, a quantum efficiency 𝑞 and a mean spurious charge emission c 

measured in electrons, the latter consisting of both Clock Induced Charge (CIC) and thermally induced dark current 

during the exposure time, the probability of 𝑛𝑖𝑒 electrons entering the EM register can be expressed as a Poisson 

distribution with mean 𝑞𝑛𝑝ℎ + 𝑐, the sum of the mean generated photoelectrons 𝑛𝑝𝑒 = 𝑞𝑛𝑝ℎ and the spurious charge: 

 𝑝(𝑛𝑖𝑒; 𝑛𝑝ℎ, 𝑞, 𝑐) = 𝑃(𝑛𝑖𝑒; 𝑞𝑛𝑝ℎ + 𝑐) (6) 

Expression (6) is the Poisson contribution to the end-to-end probability distribution of the proposed EMCCD model. 

Impact ionization in the EM register is a stochastic process, and the probability to get noe output electrons from an EM 

register with mean gain value g and nie input electrons can be modelled by a gamma distribution: 

 𝑝(𝑛𝑜𝑒; 𝑛𝑖𝑒 , 𝑔) = 𝛾(𝑛𝑜𝑒; 𝑛𝑖𝑒 , 𝑔) = 𝑛𝑜𝑒
𝑛𝑖𝑒−1

𝑒−𝑛𝑜𝑒/𝑔

Γ(𝑛𝑖𝑒)𝑔𝑛𝑖𝑒
 (7) 

with nie the shape parameter and g the scale parameter in the gamma distribution. An exception is made to (7) when 

nie is zero, that is, no electrons enter the EM register, for which case the output noe is equalled to zero also. This means 

that the assumption is made that no electrons are created in the EM register for a null input, and that spurious charges 

are not created inside the EM register, which is only an approximation. Expression (7) is the gamma contribution to 

the overall statistical model for the EMCCD. 

Finally, the readout electronics amplifies the signal and converts it into discrete image values nic, with a proportionality 

factor or sensitivity f, measured in electrons per ADU (Analog to Digital Unit) or image count. In this readout process, 

readout noise (RON) is introduced in the signal, which is modelled by a normal distribution with standard deviation 

r. Thus, the normal contribution to the EMCCD model can be expressed as: 
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nph: incident 
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 𝑝(𝑓𝑛𝑖𝑐; 𝑛𝑜𝑒 , 𝑟) = 𝑁(𝑓𝑛𝑖𝑐; 𝑛𝑜𝑒 , 𝑟) (8) 

with 𝑁(𝑓𝑛𝑖𝑐; 𝑛𝑜𝑒 , 𝑟) being the normal distribution of the process 𝑓𝑛𝑖𝑐, with 𝑛𝑜𝑒 mean value and standard deviation 𝑟. 

Ultimate quantization of 𝑛𝑖𝑐 into an integer value adds to the final total noise amount. 

Public properties emccdGain and CICNoise have been added to the detector class to contain the EM gain and spurious 

charge per pixel per frame, respectively. 

4. WORKFLOW AT THE OOMAO SIMULATION 

 

 

Figure 2. Core of the simulation workflow programmed in the OOMAO in the context of the present work 

Figure 2 shows the objects involved and the optical paths connecting them in the context of the present work’s OOMAO 

simulation. There are two optical paths that share a telescope instance with a 4.2 m. pupil diameter size and an 8.4% of 

central obscuration surface. The telescope instance embeds an atmosphere instance, which is initialized and configured 

following a model used in several examples included in the toolbox: a three-layer model with 0, 5 and 12 km. altitude and 

fractional r0’s (Fried parameters) of 0.5, 0.3 and 0.2, respectively; wind speeds are 10, 5 and 20 m/s, and wind directions 

are 0, π/2 and π. Two overall Fried parameters are considered: 21 cm, the same size as the subpupil side, and 8.4 cm, which 

is 2.5 times smaller than the subpupil side. The system frequency has been set to 500 Hz. 

Each optical path has its own source. The one labelled ngs represents the Natural Guide Start and its light ends up in the 

shackHartmann object. The second one, labelled science, represents the scientific object of interest and its light ends up in 

the imager object through a zernike object. Both light sources are set to the default wavelength of 550 nm, and therefore 

the system performance evaluation is made at the wavefront sensor (WFS) sensing wavelength. Also, both sources are 

located at the zenith, so no anisoplanatism error is being considered in the simulation. 

The SHWFS observes the full dynamic range of the atmosphere, as in an open loop configuration. The shackHartmann 

object is configured to have a matrix of 20 x 20 square shaped lenslets, and only the subpupils with a minimum of 85% of 

light with respect to the most illuminated one are considered for the phase recovery computation. Sampling of the spots 

follows the Nyquist criterion. The number of detector pixels per lenslet has been set to 10 x 10 for the case of a 21 cm Fried 

parameter (r0), making up a ~2.7” FoV, and 14 x 14 for the case of an 8.4 cm r0, making up a ~3.8” FoV. As regards the 

detector model, a quantum efficiency (QE) of 97% has been applied; star magnitudes under study are over 7.5, and an 

EMCCD gain value of 1000 has been applied; CIC noise has been set to 0.05 e-/pixel/frame, and RON to 50 rms e-. The 

sensitivity of the detector is the default 1 e-/ADU. It is through the shackHartmann properties that the centroiding algorithm 

is selected: TCoG, CC or WFPS. As for the phase recovery at the whole pupil level, two cases are distinguished based of 

the amount of incident light level: when there are more than ~50 incident photons per subpupil for the TCoG algorithm or 

more than ~30 photons for the CC and WFPS algorithms, a zonal Linear Minimum Mean Square Error (LMMSE) method 

 



estimates the phases at the subpupils’ corners, and the Zernike modes are estimated by the pseudo-inversion of the matrix 

that relates modes with these phases; for dimmer situations, directly estimating the Zernike modes from the phase slopes, 

by pseudo-inversion of the matrix that relates modes with phase slopes, gives better results. The number of recovered 

Zernike modes that gives a best performance seems to depend mainly on the lenslet pitch and has been set to 130. 

At the other optical path, an imager object receives a compensated wavefront. The corrector element is a zernike object 

that receives the corrective Zernike coefficient values from the shackHartmann instance. This correction is applied with 

the same spatial resolution in the pupil as the one defined in the telescope and shackHartmann objects, i.e., the number of 

lenslets multiplied by the number of detector pixels per lenslet. After this correction, the final Strehl Ratio (SR) can be 

easily calculated by the Marechal approximation, even before the computation of the Point Spread Function (PSF). An 

average residual phase is computed for this purpose, by integrating during a period of 4 seconds. 

Finally, the imager object receives the wavefront with the residual phase, and integrates 200 frames with a temporal 

sampling period of 20 ms to compute the system PSF. Sampling is four times finer than the Nyquist criterion, i.e., the Full 

Width at Half Maximum (FWHM) of the PSF at diffraction limit is 8 pixels wide. The selected FoV is 50 times the FWHM 

at diffraction, 1.35” or 400 pixels, for the 21 cm r0 case, and 125 times the FWHM at diffraction, 3.38” or 1000 pixels, for 

the 8.4 cm r0 case, in order to span a ~95% of the PSF energy. By knowing the total light energy at the whole pupil, the 

Encircled Energy (EE) as a function of circle diameter in arcseconds can be computed over the PSF. 

 

Figure 3. Samples of SHWFS images created with the OOMAO for a 20 x 20 subpupils configuration in a 4.2 m circular 

aperture with an 8.4% central obscuration and a magnitude 11 star. Nyquist sampling of the spots. (a) 21 cm r0, FoV of 

10 x 10 pixels (~2.7” at 550 nm wavelength), EMCCD gain of 1000, CIC noise of 0.05 e-/pixel/frame and RON of 50 

rms e-. (b) Same as in (a), for an 8.4 cm r0 and 14 x 14 pixels FoV (~3.8” at 550 nm wavelength). 

Figure 3 shows a couple of samples of the SHWFS detector’s images created with the OOMAO simulator. The first panel, 

labelled (a), is for the 21 cm r0 case and a star magnitude of 11, which for the default optical throughput of unity, means 

~31.5 incident photons per subpupil at a system frequency of 500 Hz. FoV size is 10 x 10 pixels, which for a source 

wavelength of 550 nm and Nyquist sampling of the spot corresponds to a ~2.7” FoV. The EMCCD model has been applied, 

with gain and noise values as mentioned above and repeated in the figure’s titles. RON noise is not actually visible in the 

figure. The spurious visible noise corresponds to CIC noise which, when amplified by the EM register, reaches habitual 

pixel peak values in the order of ~3000 – 5000 digital counts for the default detector sensitivity of 1e-/ADU, thus becoming 

noticeable against the spots’ peak values of ~5000 – 10000 digital counts. In the second panel, labelled (b), the FoV has 

been increased to 14 x 14 pixels, corresponding to a ~3.8” FoV, in order to cope with the increase in turbulence strength 

of an 8.4 cm r0 case. The spots are visibly more diffused and the image gives a global appearance of being noisier for the 



same amount of incident light and added noise. The reader may note the importance of an appropriate detector gain and 

noise model. The EMCCD gain is a stochastic process that contributes, together with the atmospheric turbulence and 

Poisson noise, to deform the spots. Moreover, the spurious CIC noise cannot be modelled with an additive normal noise, 

such as is done for RON. 

5. CENTROIDING METHODS COMPARED PERFORMANCE SIMULATION RESULTS 

5.1 Strehl Ratio as a function of NGS magnitude 

 

Figure 4. Strehl Ratio in percentage units, obtained by Marechal’s approximation, as a function of star magnitude, for two 

atmospheric conditions: (a) 21 cm r0 case and (b) 8.4 cm r0 case; and three centroiding algorithms: TCoG (red traces), 

CC (green traces) and WFPS with 6 spatial frequencies (blue traces).  

For the simulation configuration described in the previous section, Figure 4 shows results of achieved Strehl Ratio (SR) 

after turbulence compensation as a function of the NGS magnitude, for three centroiding algorithms under study: TCoG 

(red traces), CC (green traces) and WFPS involving six spatial frequencies (blue traces), all tuned to estimate Z-Tilt at the 



subpupil*; and two atmospheric conditions: panel (a) shows the results for a 21 cm r0 case, and results for a 8.4 cm r0 case 

are shown in panel (b). From these results we can see that CC and WFPS algorithms show a similar sensitivity behaviour, 

outperforming the TCoG algorithm by increasing the limiting NGS magnitude for a particular achieved SR. The range of 

incident light where this improvement occurs depends on the atmospheric condition and goes from a star magnitude of 8.5 

– 9, which corresponds to 300 – 200 incident photons, till the SR falls to near zero value at magnitude 11 – 12, corresponding 

to 30 – 12 photons. In the central zone of this range, the difference in star magnitude between TCoG and WFPS algorithms 

for a particular SR performance is ~0.6 to ~0.7.  

5.2 Encircled Energy as a function of NGS magnitude 

 

Figure 5. Encircled Energy graphs as a function of star magnitude for two atmospheric conditions: (a) 21 cm r0 and (b) 8.4 

cm r0; and three centroiding algorithms: TCoG (red traces), CC (green traces) and WFPS with 6 spatial frequencies 

(blue traces), all tuned to estimate G-Tilt. Diffraction limited and no correction cases are shown in black traces. 

                                                 
* It has been seen that Z-Tilt estimation at the subpupil level leads to a higher SR at a pupil level, whereas G-Tilt estimation leads to a 

higher EE at a pupil level2 



When centroiding algorithms are tuned to estimate G-Tilt at the subpupil level, the figure of merit we choose to assess the 

algorithm’s performance is the Encircled Energy (EE) as a function of spanned FoV, calculated over the PSF that the imager 

object gives. Figure 5 shows these EE graphs in a double logarithmic scale, with panel (a) corresponding to the 21 cm r0 

case and panel (b) corresponding to the 8.4 cm r0 case. TCoG results for various NGS magnitudes are shown in red traces 

with different line styles; the same magnitudes and line styles for the CC algorithm are shown in green traces; and blue 

traces are used for the WFPS algorithm. For a comparison purpose, the diffraction limited case and the turbulence 

uncompensated case are shown in black traces as best and worst limits, respectively. 

Results are in good agreement with the SR’s shown in Figure 4. For a bright NGS of magnitude 5, the performance is 

similar for the three algorithms, with the red trace of the TCoG being right underneath the green trace of the CC, and thus 

being not visible. For higher NGS magnitudes, all the EE graphs approach the uncorrected performance, with the CC and 

WFPS algorithms behaving similarly to each other, and the TCoG requiring a brighter NGS of ~0.75 lower magnitude to 

achieve the same performance as the other two algorithms. For higher than 0.15” spanned FoV’s, the WFPS gives the 

highest EE values of the three algorithms.   

6. CONCLUSIONS AND FUTURE WORK 

The Weighted Fourier Phase Slope (WFPS) algorithm has been presented as a new centroiding method for SHWFS’s that 

operates in the Fourier domain, obtaining the image displacement from the Fourier phase slopes through a Bayesian 

estimation. 

This algorithm has been introduced in the OOMAO simulator, and an open loop correction simulation has been conducted 

that takes into account only the measurement error at the subpupil level and the sensor’s fitting error at the whole pupil’s 

level. The performance of three algorithms, TCoG, CC and WFPS have been compared. In high light level scenarios, that 

is, when fitting error dominates, all the algorithms perform similarly. When measurement noise at subpupil level dominates, 

that is, at low light level scenarios, CC and WFPS allow to use dimmer NGS’s, of about ~0.6 to ~0.7 higher magnitudes, 

than the required by the TCoG algorithm, for a certain performance as measured by a SR or an EE. The WFPS algorithm 

has been tested spanning only six spatial frequencies, and this means a significant reduction in computational cost with 

respect to the CC. 

This study has been reported for a 4.2 m circular aperture with 8.4% central obscuration, which are the William Herschel 

Telescope’s dimensions. A 20 x 20 matrix of square shaped subapertures has been considered for wavefront measurement 

at the SHWFS. And two turbulence strength conditions have been simulated: a 21 cm r0, equal to the subaperture side size, 

and an 8.4 cm r0, 2.5 smaller than the subaperture side size. 

Future work may be directed towards completing the simulation by introducing the effect of the computational latency of 

the centroiding algorithms over the final atmospheric phase compensation. Also, assessing the performance degradation 

due to the variation of observational conditions, such as Fried parameter or guide star incident light, with respect to the 

nominal values used for the tuning of the algorithms, would be of interest in order to specify the required refreshment period 

in an on-sky observation of the algorithms’ parameters (Bayesian weights for the WFPS algorithm). 
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