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Abstract

The Kalman Filter (KF) application to wavefront control in Adaptive Optics (AO) shows great promise
with respect to achieving the best atmospheric turbulence error rejection, provided an adequate model
for the turbulence temporal dynamics exists. The advent of the computationally efficient Distributed
Kalman Filter (DKF) algorithm makes the KF approach especially attractive for the future of high DOF
AO systems (As is the case in the Extremely Large Telescope class). In this work we try to address a
significant drawback of the existing DKF state space model, which is too simplistic (single parameter
scalar diagonal state matrix) to describe the atmosphere turbulence dynamics. We investigate a broader
family of Block-Toeplitz with Toeplitz Blocks (BTTB) state matrices, which, on one hand, are able to
better grasp statistical properties of the turbulence to provide significantly better prediction power and,
on the other hand, preserve the shift invariance property, a corner stone of the DKF algorithm. We
demonstrate the capabilities of the new model in the end-to-end simulations of the DKF-driven Single
Conjugate AO system.

1 Introduction

The future AO systems for Extremely Large Telescopes (ELTs) requires new, low complexity, control
algorithms that would beat the typical O(N2) scaling law (N is the number of AO system degrees of
freedom, DOF) of classical Matrix-Vector Multiplication (MVM) based algorithms, which appear to
be inadequate for the ELT’s multi-thousand DOF AO systems. A recently proposed [1] Distributed
Kalman Filter with O(N logN) complexity looks especially attractive for use in the ELT AO systems
because it gives an elegant solution to the long-standing problem of low-complexity application of the
KF to AO systems allowing to achieve a near-optimal performance in comparison to the Minimum
Variance controllers [2] and also provide a method of system state prediction for efficient temporal lag
compensation [3].

In this paper we revisit the DKF theory initially presented in the seminal paper [1] to address some of
its drawbacks. In particular, we re-derive the DKF equations strictly within pure matrix algebra showing
that the DKF essentially results from the circulant approximation of the system matrices involved in the
classical KF equations while such an approximation is the consequence of the shift-invariance inherent in
most AO systems. Another improvement to the seminal DKF is the replacement of the overly simplistic
single-parameter diagonal state transition matrix used in [1] with a matrix of the block-circulant class,
which does not violate the DKF assumptions but contains significantly more free parameters. As an
illustration of our approach we design a DKF for a case of high-complexity 50-meter class telescope
Single-Conjugate Adaptive Optics (SCAO) system and validate it via end-to-end simulations.



2 Linear System Review

2.1 Discrete Time State Space Dynamic System

The standard state space description of a Linear Time-Invariant (LTI) dynamic system:

xt+1 = Axt +But
yt = Cxt +Dut

(1)

is used to represent an AO system. In (1), the parameters and variables are defined as:

• xt, the state vector of turbulence phase values at time t;

• yt, the measurement vector of the sensor readouts at time t;

• ut, the concatenated noise vectors at time t, since the filtering problem has no control input.

ut =

[
pt
nt

]
, where pt is the process noise due to turbulence at time t, and nt is the measurement

noise due to the wave-front sensor (WFS) process at time t.

• A is the state matrix, which approximates the state vector at time t+ 1 given the state vector at
time t.

• B is set to [I 0] in order to map the process noise, pt, onto the state vector at time t + 1. pt is
temporally white noise with a covariance matrix found from the Lyapunov Equation [4]:

〈ppT 〉 = 〈xxT 〉 −A〈xxT 〉AT (2)

where 〈xxT 〉 is the turbulence covariance matrix.

• C is the turbulence-to-WFS poke matrix. This maps the turbulence phase to the WFS measure-
ments.

• D is set to [0 I] in order to map the measurement noise, nt, onto the measurements at time t.

These definitions allow the use of a linear model with known noise covariance to model the dynamic
evolution of atmospheric turbulence as it would be seen by the pupil.

2.2 Kalman Filter

The recursive equations [3] for the Kalman Filter are the most convenient in this demonstration. For
time t = 0, 1, . . .

x̂t+1|t = Ax̂t|t
x̂0|0 = 0

ŷt+1|t = Cx̂t+1|t
x̂t+1|t+1 = x̂t+1|t +Kt

(
yt+1 − ŷt+1|t

)
Σ0|0 = 〈ppT 〉

Σt+1|t = AΣt|tA
T + 〈ppT 〉

Kt+1 = Σt+1|tC
T
(
CΣt+1|tC

T + 〈nnT 〉
)−1

Σt+1|t+1 = Σt+1|t −Kt+1CΣt+1|t

(3)

Here, x̂ denotes the estimate of the true value of the variable x; Kt is the Kalman gain at time t;
Σ =

〈
(x− x̂)(x− x̂)T

〉
is the estimation error covariance matrix. The steady-state value of Kt, i.e., K∞

is used in the filter implementation.
It is required that for limt→∞Kt to converge, the (A, C) pair should be observable and the (A, 〈ppT 〉)

pair should be controllable.
Problems with Kt convergence may arise in the case of piston and/or tip/tilt removal.



2.3 Similarity Transformation

Take an invertible matrix, T , and perform a change of variables by the substitution of: x→ T−1x′

After this substitution, (1) becomes:

x′t+1 = TAT−1x′t + TBut
yt = CT−1x′t +Dut

(4)

The state space system in (4) is equivalent to (1) but in different co-ordinates and with different
system matrices. The motivation behind such a transformation is to diagonalise the system matrices [1]

2.4 Shift Invariance

Any linear transformation in finite-dimensional space can be represented as a matrix-vector multiplication
(MVM). Index-wise, y = Ax is identical to:

yi =

N∑
j=1

Aijxj

Extending this to infinite-dimensional space yields the integral:

y(r) =

∫
A(r, r′)x(r′)dr′

where Aij becomes the transformation kernel A(r, r′). If the kernel is shift-invariant, it depends only on
(r − r′). This is then equivalent to the convolution:

y(r) =

∫
A(r − r′)x(r′)dr′

Returning to finite-dimensional space, the corresponding convolution matrix Aij has a special struc-
ture. In one dimension, this structure is known as the Toeplitz Matrix.

2.5 Convolution as a Matrix

Simply by observation, one can see that the one-dimensional discrete convolution:

yi =

N∑
j=1

hi−jxj

is representable as a MVM with a Toeplitz Matrix, defined element wise by:

Aij = Ai+1 j+1 = hi−j

Two-dimensional discrete convolution:

yij =

N∑
k=1

N∑
`=1

hi−k,j−`xk`

is similarly representable by a Block Toeplitz matrix with Toeplitz Blocks (BTTB):

Aij,k` = hi−k, j−`

where the MVM of Ax = y is computed via multi-index:

yij =

N∑
k=1

N∑
`=1

Aij,k`xk`

The set of Toeplitz (or BTTB) matrices of finite size possesses an unpleasant property: it is closed
with respect to addition but not multiplication (Toeplitz times Toeplitz is not generally Toeplitz).



Figure 1: A 3 by 3 phase array in Fried Geometry, with 2 by 2 lots of slopes within them.

This is because Toeplitz (or BTTB) matrices of finite size represent convolution within finite space
and therefore, on the border, the convolution is truncated.

This boundary effect can be overcome by extending the matrix to infinity, or applying a Periodic
Boundary Condition (PBC). The PBC leads to the circulant matrix, which is a square matrix defined
element wise as:

Cij = ai−j+1, i, j = 1, . . . , n

and all i− j + 1 are computed modulo n. The Block Circulant matrix with Circulant Blocks (BCCB) is
defined analogously to the BTTB matrix.

2.6 Sensor Measurement Matrix

For the case of Fried Geometry, the measurement matrix mapping the 2-D phase grid into 2-D phase
slope grid is:

Cx =
1

2d


−1 −1 0 1 1 0 0 0 0

0 −1 −1 0 1 1 0 0 0
0 0 0 −1 −1 0 1 1 0
0 0 0 0 −1 −1 0 1 1



Cy =
1

2d


1 −1 0 1 −1 0 0 0 0
0 1 −1 0 1 −1 0 0 0
0 0 0 1 −1 0 1 −1 0
0 0 0 0 1 −1 0 1 −1

 (8)

where d is the phase grid spacing (lenslet size). Note that the measurement matrix is BTTB, but
non-square because the four phase points make only one slope (See Figure 1).

To make the BCCB approximation of Cx and Cy there are two steps:

• Augment the slope point grid to have the same number of points as the phase grid (and, therefore,
result in square matrices).

• Apply PBC to create virtual phase points necessary to compute slopes in the augmented slope grid
positions as shown in Figure 2.

The resulting BCCB measurement matrices take the form:

Cx =
1

2d



1 1 0 0 0 0 −1 −1 0
0 1 1 0 0 0 0 −1 −1
1 0 1 0 0 0 −1 0 −1
−1 −1 0 1 1 0 0 0 0

0 −1 −1 0 1 1 0 0 0
−1 0 −1 1 0 1 0 0 0

0 0 0 −1 −1 0 1 1 0
0 0 0 0 −1 −1 0 1 1
0 0 0 −1 0 −1 1 0 1


(9x)



Figure 2: Illustration of the PBC application to the 3 × 3 phase grid and the Fried WGS geometry. White dots
correspond to the slope grid, grey dots are the phase grid, and black dots are the virtual points of the augmented
phase grid. Arrows show how the phase values are copied according to PBC. Dashed arrows are the virtual slopes
that are created by the PBC application.

Cy =
1

2d



1 −1 0 0 0 0 1 −1 0
0 1 −1 0 0 0 0 1 −1
−1 0 1 0 0 0 −1 0 1

1 −1 0 1 −1 0 0 0 0
0 1 −1 0 1 −1 0 0 0
−1 0 1 −1 0 1 0 0 0

0 0 0 1 −1 0 1 −1 0
0 0 0 0 1 −1 0 1 −1
0 0 0 −1 0 1 −1 0 1


(9y)

which are perfectly BCCB.

2.7 Discrete Fourier Transform as a Matrix

A circulant matrix has the convenient property: it is diagonalised by the Discrete Fourier Transform
(DFT). The 1-D DFT f̃ of a vector f is:

f̃n =

M−1∑
m=0

e−2πimn/Mfm, n = 0, 1, . . . , M − 1

The corresponding DFT matrix is (with ω = e−2πi/M ):

FM =


1 1 . . . 1
1 ω1 . . . ω1(M−1)

...
...

. . .
...

1 ωM−1 . . . ω(M−1)(M−1)


such that f̃ = FMf . The 2-D DFT matrix of an N ×M image is FM ⊗ FN where ⊗ is the Kronecker
Matrix product.

Theorem ([5]). Let C be a Circulant Matrix defined by its first column c. C is diagonalised by the DFT
matrix:

C = F−1M ∆FM , ∆ = diag(FMc) (5)

Corollary. Using (5), it is clear that Circulant matrices are closed under multiplication (circulant times
circulant is circulant). Moreover, they commute.

Returning to the state space model in (1), and applying the DFT similarity transforms, the system
becomes:

xt+1 = F−1∆AFxt + pt
yt = F−1∆CFxt + nt



Left-multiplying by F and re-assigning x̃t = Fxt, ỹt = Fyt, p̃t = Fpt, ñt = Fnt we arrive at:

x̃t+1 = ∆Ax̃t + p̃t
ỹt = ∆C x̃t + ñt

(6)

where ∆A and ∆C are diagonal. Analogously, assuming that A, C, 〈ppT 〉, 〈nnT 〉 are Circulant (or
BCCB) it is clear that the Kalman Filter Equations (3) are diagonalised too.

2.8 Circulant Approximation of Phase Covariance

Thus, from Section 2.7, it is very desirable to have all state space matrices to be or to be approximated
by BCCB matrices. Since the AO system, at least atmospheric turbulence and the Shack Hartmann
WFS are shift-invariant, the AO matrices are BTTB.

To approximate the BTTB matrix with a BCCB one, a PBC is applied (see Figure 3). In order to
minimise the effect of this periodicity, the matrices are padded with virtual states and measurements
which are purely for structure.

Figure 3: Illustration of the Periodic Boundary Condition application in the case of 1D Toeplitz convolution
matrix. The PBC returns the lost values to the beginning of the next row. N.B. No values are altered by PBC
within the area of interest if we embed it into a twice as large domain.

The shift-invariant turbulence phase covariance has the form:

Σij = 〈φφT 〉ij = Σ
(
|xi − xj |

)
where {x}N2

i=1 are 2-D phase point position vectors from an N ×N map, column-wise concatenated into
an N2 × 1 column. Σ(r) is the Von Karman turbulence phase covariance function [6]:

Σ(r) =
0.033 · 0.185

5
3 · 4π2

2
5
6 Γ( 11

6 )

(
r0

2π

L0

)− 5
3
(
r

2π

L0

) 5
6

K 5
6

(
r0

2π

L0

)
(7)

where r0 is the Fried Parameter; L0 is the outer scale; K 5
6

is the Bessel function of second kind, with

order 5
6 ; Γ(·) is the Gamma-function; and r is the distance between a pair of phase points to be correlated.

Note that the Σ matrix is BTTB due to shift-invariance of the Σ(r) function. With the goal of
circulant approximation, the BTTB matrix is embedded into a region twice as large, and the PBC is
applied. This is illustrated below for the 1D case (see also Figure 3). For a Toeplitz matrix: a0 a1 a2

a−1 a0 a1
a−2 a−1 a0





with compact representation
[
a−2 a−1 a0 a1 a2

]T
, the circulant embedding has compact repre-

sentation
[
a0 a−1 a−2 a2 a1

]T
. The corresponding full circulant matrix after such an embedding

looks like:

The correct covariance matrix is within any framed part of the circulant covariance matrix approximation
meaning that within any N × N sub-region inside the extended 2N × 2N domain the phase will have
the correct covariance matrix, but not for the entire extended domain.

2.9 Turbulence State Matrix

In the paper of Massioni et al [1], the state matrix is chosen to be the identity with a decay factor,
|α| < 1, such that A = αI. Being diagonal, this matrix is BCCB. This matrix ignores the dynamic
evolution of the turbulence, and as such, motivates the search for a BCCB matrix capable of including
this information. The most natural state matrix to consider would be the BCCB approximation of the
“near-Markov” matrix [7]:

A = 〈φt+1φ
T
t 〉〈φtφTt 〉−1 (10)

which is the minimum variance linear statistical estimate of the phase at time t+ 1 using the phase data
at time t and the phase cross, 〈φt+1φ

T
t 〉, and auto, 〈φtφTt 〉 temporal covariances.

Under the following assumptions, the A matrix in (10) can be computed analytically:

• The turbulence parameters (r0 and L0) are known.

• The temporal evolution of the turbulence is describable by the Taylor Hypothesis [8] (Frozen Flow)
and the layer velocities associated with this assumption are known.

Since the different turbulence layers are statistically independent of each other, the A matrix takes
the form:

A =
( L∑
`=1

〈φt+1φ
T
t 〉`
)( L∑

`=1

〈φtφTt 〉`
)−1

and, with the Taylor Hypothesis:

Aij =
( L∑
`=1

Σ`(xi − xj − v`dt)
)( L∑

`=1

Σ`(xi − xj)
)−1

where v` are the wind velocity vectors for each layer, dt is the frame exposure time, Σ`(·) are the layer
covariance functions. The cross-covariance of a single layer is the shift of the layer’s auto-covariance.
Moreover, from the Von Karman equation (7), it is seen that a difference in r0 manifests only in a
multiplicative constant change. If it is assumed that L0 are equal for all layers, the latter equation in
the Fourier domain reduces to:

Ã(f) =
R
∑L
`=1 w`XY`(f)Σ̃(L0, f)

R
∑L
`=1 w`Σ̃(L0, f)

=

L∑
`=1

w`XY`(f) (12)

where a tilde refers to the Fourier Transformed functions; Σ(L0, f) is the Von Karman phase covariance

for fixed L0 and r0 = 1; R =
(

2πr0
L0

)− 3
5

; XY`(f) = e−2π i dt v` f is the wind shift term in the Fourier

Domain; and {w`}L`=1,
∑
w` = 1, are the relative turbulence layer weights. Finally, it can be noted that

the state matrix based only on wind shifts does not depend on the turbulence statistics.



3 Distributed Kalman Filter Equations

The process of finding the DKF equations from the standard Kalman Filter equations in (3) is demon-
strated here. The diagonalisation is complicated due to the C matrix and 〈nnT 〉 matrix not being BCCB,
but instead consisting of BCCB blocks (we deliberately avoid extending the acronym). This, however,
still can be cast into a diagonal form by the DFT. Denote:

Σk|p = F−1∆k|pF (13a)

C =

[
Cx
Cy

]
=

[
F−1 0

0 F−1

] [
∆x

∆y

]
F (13b)

〈nnT 〉 =

[
nxx nxy
nyx nyy

]
=

[
F−1 0
F−1 0

] [
∆xx ∆xy

∆yx ∆yy

] [
F 0
F 0

]
(13c)

where F is the Fourier Transform matrix, ∆’s are the diagonal matrices of the circulant matrix eigenvalues
coinciding with the Fourier Transform of the corresponding compact1 BCCB representations.

Letting:

G =

[
∆x∆t+1|t∆

∗
x + ∆xx ∆x∆t+1|t∆

∗
y + ∆xy

∆y∆t+1|t∆
∗
x + ∆yx ∆y∆t+1|t∆

∗
y + ∆yy

]−1
and substituting (13) into (3), for Kalman Gain and residual phase covariance, we get:

Kt+1 = F−1∆t+1|t
[
∆∗x ∆∗y

]
G

[
F 0
0 F

]

Σt+1|t+1 = F−1

(
∆t+1|t −∆t+1|t

[
∆∗x ∆∗y

]
G

[
∆x

∆y

]
∆t+1|t

)
F

where (·)∗ denotes the complex conjugate. Note that the matrix to invert contains 2×2 diagonal blocks.
The inverse will have the same structure and is easy to find by rearranging the matrix into block-diagonal
form with 2×2 blocks. There is, however, a simpler way of writing the same equations taking advantage
of the Matrix Inversion Lemma [4][2]:

Σt+1|tC
T
(
CΣt+1|tC

T + 〈nnT 〉
)−1

=
(
CT 〈nnT 〉−1C + Σ−1t+1|t

)−1
CT 〈nnT 〉−1

The 〈nnT 〉 and Σt+1|t inverse are easy to find; the former is a matrix with 2× 2 diagonal blocks with
equal elements on the diagonals, so it is enough to invert one 2 × 2 matrix to get 〈nnT 〉−1, the Σt+1|t
inverse is just a reciprocal of ∆t+1|t. Using the Inversion Lemma we get the alternative Kalman gain
and residual covariance equations:

Kt+1 = F−1
(

∆n + ∆−1t+1|t

)−1
[∆nx ∆ny]

[
F 0
0 F

]
Σt+1|t+1 = F−1

(
∆t+1|t −

(
∆n + ∆−1t+1|t

)−1
∆n∆t+1|t

)
F

where:
Cn = CTx ixxCx + CTx ixyCy + CTy iyxCx + CTy iyyCy = F−1∆nF

[Nx Ny] =
[
CTx ixx + CTy iyx C

T
x ixy + CTy iyy

]
= F−1 [∆nx ∆ny]

[
F 0
0 F

]
〈nnT 〉−1 =

[
ixx iyx
ixy iyy

]
An important note should be made about the

(
CΣt+1|tC

T +〈nnT 〉
)

or
(
CTΣ−1t+1|tC+Σ−1t+1|t

)
matrix

inversion. Since C as well as Σt+1|t have piston in their null space, the aforementioned matrices are not
invertible. To fix this, one needs to inject a piston mode [2]:

CTΣ−1t+1|tC + Σ−1t+1|t → CTΣ−1t+1|tC + Σ−1t+1|t + ZZT

1The compact form of a BCCB matrix is defined to be the kernel of the corresponding convolution (since an MVM with
a BCCB matrix is equivalent to the circular convolution with a given kernel. An interested reader should look to [5] for
the full derivations.



where Z is the piston vector consisting of ones. Note that ZZT is BCCB. This means the inverse exists
and this operation will add an arbitrary amount of piston into the phase estimate, which needs to be
removed afterwards. In the case of working in the Fourier space, the piston injection/removal is simply
adding to the first element of the C and Σt+1|t matrices to make the DC components non-zero, then set
the DC component of Kt to be zero to remove the piston from the estimate.

4 Results

The prediction power of the “wind-shift” BCCB A matrices is shown in Figure 4. As can be seen, the
prediction power is moderate (though significantly better than that of the non-predictive diagonal A-
matrix). It should be pointed out, however, that we are considering the sum of the turbulence layers as the
only observable entity in the case of the SCAO. The prediction power of the Near-Markov approximation
in the case of a single turbulence layer is much better [3].

Figure 4: Phase error vs. time lag for Mauna Kea [9] (left) and Cerro Tololo [10] (right) turbulence profiles.
Phase prediction is done for the sum of turbulence layers via the circulant approximation to the Near-Markov
A-matrix.

Presented on Figure 5 are the images of the compact BCCB forms of the K and Σ matrices for the
Mauna Kea turbulence profile.

Σ̃∞|∞ Re(K̃X
∞) Im(K̃X

∞) KX
∞

Σ∞|∞ Re(K̃Y
∞) Im(K̃Y

∞) KY
∞

Figure 5: Density maps of the Kalman gain and residual phase covariance matrices in BCCB representation on
the augmented 256 × 256 phase grid.

End-to-end simulations were made to evaluate the DKF performance. The following assumptions are
in consideration:

• A 100× 100 lenslet SCAO system for a generic 50-meter telescope was modeled.



• 6-layer Mauna Kea [9] and 7-layer Cerro Tololo [10] turbulence profiles were considered.

• Turbulence phase screens were generated via Fractal Method [11].

• Layer wind shift was done via Fourier domain shift operators.

• Simple Fried geometry model was used for slope generation from phase points.

• No measurement noise, but the 〈nnT 〉 for DKF was computed for noise with SNR = 10.

• Only 0.5-meter Fried geometry phase grid was used. Thus no fitting error, no aliasing, just the
pure estimation residual.

The end-to-end simulation results are presented on Figures 6 and 7. The most pronounced conse-
quence of the circulant approximation, as seen from Figure 6, is the large phase residual at the pupil
edge resulting from limiting the phase and slope values to the pupil area. This error will always be seen
in a pure DKF algorithm due to the shift-invariance assertion, though modifications of this algorithm
could see it reduced.

(a) No Lag (b) 2 frame lag, non-predictive model

(c) 2 frame lag, predictive model
(d) 2 frame lag, 2-pixel edge error suppressed
(for demonstration only)

Figure 6: Residual phase maps (note the edge effect)

4.1 Data Extraction for Model

In order to construct the state transition matrix A as described by Equation (12), it is necessary to know
the wind vectors (and weights) for the layers. This data can be extracted from WFS slope sequences
via a simplified version of the SLODAR algorithm [12]. The simplification comes from the fact that in
SCAO, turbulence layer altitudes are not necessary and therefore there is no need for double referenced
stars.

The estimation is based on recording the sample cross-covariance matrix between pairs of slope vectors
taken with time lag. Owing to the BTTB structure of the cross-covariance, its compact representation is
actually recorded by collapsing all equivalent lenslet pairs into one pixel. The resulting 2D image has a
nice property; the cross-covariance maximum for each layer occurs at [Vx, Vy] dtdx position, where [Vx, Vy]
is the wind speed vector of the layer, dx, dt are the lenslet size and time lag, respectively. The turbulence
estimation algorithm can be split into two parts:



(a) Mauna Kea Turbulence (b) Cerro Tololo Turbulence

Figure 7: Transient response of residual phase error for DKF

1. The wind velocity vectors are found from the cross-covariance BTTB imagine via a peak detection
algorithm. In order to reliably distinguish the peaks, it is advisable to set ample time lag between the
slope samples2.

2. Given the peak number and positions, the relative weights are estimated as the relative peak
heights.

It is found that the best results are obtained on the closed-loop slopes, that is, the residuals after DM
correction as their covariance peaks are the narrowest. The Kalman Filter phase reconstructor perfor-
mance with theoretical and sample-based A matrix are nearly indistinguishable. The typical simulated
slope covariance maps are shown in Figure 8

(a) Mauna Kea Turbulence (b) Cerro Tololo Turbulence

Figure 8: Estimated wind speed density maps to be used for layer identification. 300-frame lag at 500Hz, 400
samples.

5 Conclusion

In this work we revisited the theory of the Distributed Kalman Filter and showed that it can be derived
as a circulant approximation of the classical Kalman Filter for AO systems possessing shift-invariance.
This provides certain flexibility in the AO system modeling, in particular, there is no need to use a
WFS model based on the Fried Geometry, since any model that is shift-invariant is valid for the DKF.
Additionally, we have shown a natural way to construct the shift-invariant state matrix with non-trivial

2The number of peaks is not necessarily equal to the number of turbulence layers, if the angular velocities of those
layers are sufficiently close. Fortunately, this does not affect the reconstructor performance, since there is fundamentally
no difference in the turbulence as seen at the pupil.



prediction power. While our application of DKF is restricted only to the SCAO case, the topic for the
future work could be a generalisation of this approach to tomographic AO systems.
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