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ABSTRACT

Current high contrast imaging systems are limited at small angular separations, preventing the direct imaging
of Earth-size exoplanets close to their host stars. One primary cause of this is the performance of the extreme
adaptive optics (AO) system which is dominated by the servo-lag error at small angular separations. Prediction
can be used to help reduce this servo-lag error. Most AO systems today do not use predictive controllers (integral
controller), resulting in a phase correction that is proportional to the current measured wavefront and does not
take into account the evolution of the wavefront phase fluctuations between measurement and correction. To
improve upon this, we focus on the development of different predictive control strategies that estimate how
the wavefront phase fluctuations evolve over a time horizon equal to the servo-lag. Moreover, the statistical
properties of the turbulence phase are non-stationary (change in time) which needs to be included in the AO
analysis for high contrast imaging systems. First, we show that the non-stationary properties of the atmosphere
can be modeled using a von Karman covariance function which can incorporate variations in time of the Fried
parameter, outer scale, and wind velocity. Using this new disturbance model of turbulence, the performance of
three different predictors– based on a steady state, a recursive, and an adaptive linear-minimum-mean-square-
estimator (LMMSE)—is tested under non-stationary conditions. We feed the prediction algorithms wavefront
slopes from a 11-by-11 subaperture Shack-Hartmann wavefront sensor. A 97 actuator deformable mirror applies
the predictor’s phase correction. We present the latest results of our simulations and compare our predictors
with the common integrator. We show that under our varying wind conditions, the root-mean-square wavefront
error can increase by a factor of two for both the integrator and our predictors. In our simulations, we do not
observe an increase in performance using an exponential forgetting factor adaptive LMMSE.
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1. INTRODUCTION

Since the first direct image of an exoplanet,1 high contrast imaging (HCI) has been a very active field. Capable
of providing insight into planet formation, characterizing an exoplanet’s’s atmosphere, and searching for signs of
habability, HCI spatially separates the planet’s photons from the ones emitted by the host star. With multiple
dedicated instruments such as SPHERE2 on the VLT, GPI3 on Gemini South, and SCExAO4 on Subaru many
new new techniques, better coronagraphs, and low noise detectors have been developed. These efforts have
resulted in contrast levels of 10−4 − 10−5 at 0.5”-1” separation5 in the near infrared (see Figure 1).

However, to answer the fundamental questions of: is the earth unique? Is our solar system unique? And how
did we form? we need to aim for contrast levels of 10−7 − 10−9 at separations of 0.05” - 1” (in the visible) to
find cold jupiters, neptunes, and rocky planets. Currently, the limiting factor is the correction achieved by the
adaptive optics systems within the HCI systems. Specifically, the chromatic index and servo-lag error prevent
us for observing at small separations as shown in Figure 2. We focus on minimizing the servo-lag error. One
approach is to run our AO system faster, requiring high speed deformable mirrors, fast wavefront sensors, and
bright guide stars. Another approach is to focus on understanding what happens to the induced wavefront phase
fluctuations to correct for the changes that occur during the servo-lag. This is done through predictive control
methods.



Figure 1. Current and future high contrast imaging capabilities.6 The ELTs HCI instrument METIS was added by
authors.

Figure 2. An example of an adaptive optics error budget showing that the servo-lag error is a major limitation of achievable
contrast5 at small angular separations.



1.1 Predictive control in adaptive optics

As early as the 1970s,7 predictive control has been proposed to mitigate the effect of inevitable time delays in
adaptive optics systems. To date, linear prediction has been very successful for tip tilt compensation, especially
when the source of the vibrations are well characterized, using linear quadratic gaussian control (LQG; Kalman
filter as the predictor).8–10 Work has been done on the LQG controller for full atmospheric disturbance .11–13

Different varieties of the Kalman filter predictor,14,15 which have allowed for filtering in real time, are now being
used in laboratory testing 16 as well in on sky testing .17 The data driven H2 optimal control18 was also tested
on-sky19 showing a reduction in the temporal error. Finally, adaptive predictors have been proposed 20 to track
the time-varying behavior of atmospheric turbulence.

Similar to any control problem, the characteristics of the system (XAO system), disturbance, and the time
scales all influence the choice of the controller. Due to the variations of the mean and variance of phase aberra-
tions, atmospheric turbulence induced phase fluctuations are non-stationary. If we account for this behavior, we
will be able to find a better performing predictive controller.

In this paper, we focus on understanding the input disturbance —atmospheric turbulence— of an AO system
on short time scales. We look at how the disturbance model affects the performance of an AO system using
basic prediction methods. The predictors are described in Section 2. The statistical behavior and the non-
stationarities of turbulence are described in Section 3. We present, in Section 4, the results our AO simulation
with our new turbulence model and we discuss the impact of the results on predictor design. Finally, we outline
our ongoing and future work.

2. PREDICTION FILTER DESIGN

We implement a linear finite order predictor. We denote a single phase point within a phase screen as yi.
Assuming that the future predicted value of a given phase point, ŷi at the discrete time index t + 1, is a linear

combination of previous phase values, ~w(t) – a P x 1 column vector containing a collection of previous true phase
values, we define the following, where P is the number of prior phase points:

ŷi(t+ 1) = ~Ai · ~w(t) (1)

~w(t) =
(
y0(t) y1(t) y2(t) ... yP (t)

)T
(2)

The prediction vector, ~A, is then determined by minimizing the linear-minimum-mean-square-error cost
function:

min ~Ai
< ||yi(t)− ~Ai ~w(t)||2 > (3)

The strength of this method is that the algorithm immediately extracts any spatio-temporal information from
the data provided.

We implement our linear-minimum-mean-square-estimator (LMMSE) in three different ways. A batch method
LMMSE is performed by storing measurements and determining the filter once enough measurements have been
taken (after Q time steps). During this period, the LMMSE cannot be used and is considered offline. Solving
batch-wise, we first define

~W =
(
~w(t) ~w(t− 1) ~w(t− 2) ... ~w(t−Q)

)
(4)

and

~Y =
(
yi(t+ 1) yi(t) yi(t− 1) ... yi(t− (Q+ 1))

)T
(5)

By substituting ~W and ~Y for ~w and ~y in Equation 3, respectively, we find the prediction vector to be:

~Ai = ~W+~Y (6)



Figure 3. The phase points at t=N to use to predict the point at t=N+1.

Here a pseudo inverse (denoted by +) is performed to find the prediction vector. We can also rewrite this
equation such that the prediction vector is the product of the inverse of the auto-covariance matrix and cross-
covariance vector.

~Ai = C+
~w~w
~C~wŷ (7)

In the batch-wise approach, once the prediction vector is found it is fixed for the rest of the simulation. By
making use of the matrix inversion lemma, we can form a recursive solution in which the covariance matrices
are updated at each time step (Equations 8 and 9), removing the need for a pseudo inverse calculation (greatly
reducing the computational load).

C−1
~w~w(t) = C−1

~w~w(t− 1)−
C−1

~w~w(t− 1)~w(t− 1)~wT (t− 1)C−1
~w~w(t− 1)

1 + ~wT (t− 1)C−1
~w~w(t− 1)~w(t− 1)

(8)

~C~wŷ(t) = ~C~wŷ(t− 1) + ŷ(t− 1)~wT (t− 1) (9)

The recursive solution can go online immediately with the initial covariance being set to diagonal matrices
with large values (as done with recursive least squares methods). The solution is quick to converge (within tens
of iterations). The memory of the recursive solution is not limited and therefore all previous measurements
affect the solution. We also use a regularization parameter to stabilize the recursion. Finally, we introduce an
exponential forgetting factor to the recursive method, creating a simple adaptive method as our third LMMSE.

The LMMSE is convenient in that it allows us to choose the amount of input data used for prediction. We
assume the phase screen is simply blowing across the pupil (i.e., the phase fluctuations on the upper half of the
pupil were measured –at some point in time– on the lower part half of the pupil). This is known as the Taylor’s
Frozen Flow hypothesis. Hence, knowing how far (for example units of subapertures) the phase screen is shifted
by, we limit the number of previous phase screens to one. We further limited it such that a given phase point
only uses it neighboring phase points (within a radius of 5 grid points) in the prediction algorithm (see Figure
3). This allows for us to reduce the computation time as well as study how the LMMSE behaves for different
amounts of input information. A similar thing can be done to build a temporal only predictor by assuming no
spatial correlation and that the wavefront phase at each point can be represented by an independent time series.
The overall performance might be optimized by providing multiple previous phase screens.



3. NON STATIONARY TURBULENCE MODEL

The spatial behavior of atmospheric turbulence induced phase is often described by a power spectral density
(PSD) function in which the Fried parameter, and outer scale can be used to describe the spatial phase variations.
We consider a spatial and then derive the temporal PSD by applying Taylor’s Frozen Flow hypothesis which
involves the wind speed and direction(see Section 3.3). Many simulations use this prescription to model the
input disturbance into the AO control loop. In this situation, any time-shift corresponds to a pure shift of the
phase screen due to wind (for a single layer). However, we know that this Frozen Flow approach ignores the time
varying behavior of the atmosphere. Therefore, we aim to understand how the atmospheric parameters vary, as
a result of the non-stationary behavior of turbulence, and what impact the variations have on the system.

We make use of the von Karman turbulence model by implementing Assemat’s21 infinite phase screen that
allows for the new rows of atmosphere to be generated online. Their use of a von Karman covariance function
to generate the phase allows for the wind speed and Fried parameter (we do not focus on the outer scale as little
information is known on its fluctuations and it affects the temporal PSD the same way as the wind speed) to be
changed online. To properly vary these parameters we need models that describe how the Fried parameter and
wind speed change in time.

3.1 Fried parameter variations

The Fried parameter (or coherence length) is a measure of the strength of turbulence with large numbers corre-
sponding to weak turbulence and small values corresponding to strong turbulence. It is by definition the path
integral of the C2

n profile and therefore is directly related to changes in the temperature fluctuations in the atmo-
sphere. There is no data on the Fried parameter at a frequency of 1 Hz or greater using available stereo-scidar
measurements. Using wavefront sensor data, Doelman22 determined a fractional ARIMA model to describe the
evolution of the Fried parameter at La Palma on the time interval of 100 seconds. We adopt this model, creating
a time series by assuming the Fried parameter remains constant over these 100 seconds. We feed this series into
our atmospheric phase generator.

3.2 Wind variations

Although much work has been done on the variation of wind speed over long time scales, including van der Hoven’s
PSD 23 and time evolving PSD for applications in civil engineering,24 we were unable to find an appropriate model
useful for our proposes. The slope of the PSD changes significantly depending on the altitude and geometry of
the location. Also, the behavior of wind varies from day time to night time. Wind data measurements (minute
time scales) in flat agricultural areas (such as Cabauw in the Netherlands operated by Cesar Observatory) show
very different variations (in amplitude and in mean wind speed) from data at Mauna Kea or Paranal with the
same sampling. There are also added affects such as dome geometry and the telescope movement that contribute
to the relative wind velocity seen by the AO system that are not described by these PSDs and data. Finally, the
variation in wind direction also needs to be considered.

Due to the lack of data and wind models that accurately describe the wind at an observatory, we assume
a worst case scenario – wind gusts combined with turbulent induced fluctuations. We use the Kaimal PSD
to generate the small wind fluctuations caused by turbulence and assume the atmosphere is stationary for one
second;24 we then change the mean wind speed using a probability density function25 and generate another time
series of one second. In the end, we have a time series that resembles wind gusts with some fast fluctuations on
top. Although this does not accurately represent the true wind fluctuations, we are subjecting the predictor to
small variations and large variations in one time step as well as using wind speeds that are commonly seen at
observatories. It also allows us to setup the pipeline for testing future wind speed models.

3.3 Effect on prediction and control

To understand how the wind, outer scale, and Fried parameter affect the disturbance model and the ability of
the system to reject the disturbance, we look at the spatial and temporal von Karman PSDs. We define the
spatial PSD, for a single point and a single layer, in Equation 10 (neglecting the inner scale) with L0 as the outer
scale. The Fried parameter is represented by r0.

Φ(k) = 0.0229r
−5/3
0 (k2 + 4π2L0

2
)−11/6 (10)



For discussion purposes, we write the single-sided temporal PSD26 ( Equation 11), substituting in C2
ndh ∝

r
−5/3
0

k̄2

to give:

Φ(f) ∝ (
v

r0
)
5/3

(f2 +
v2

L2
0

)−4/3 (11)

Note, Equation 11 is slightly different from the temporal PSD used in our simulations by using Frozen Flow to
evolve our phase screens.

Equations 10 and 11 show that when the Fried parameter varies both the spatial and temporal gains are
changed. The outer scale also affects the spatial PSD gain as well as the cut-off frequency of the temporal
PSD. Variations in the wind velocity change the gain and cut-off frequency of the temporal PSD. A predictor
ideally is able to account for the variations in the cut-off frequency that are due to the changing disturbance’s
statistics (variations in gain are not an issue as the input signal to the predictor encodes any gain variations).
Time-invariant predictors are based on stationary disturbance statistics. Therefore, knowledge the dynamical
behavior of wind speed and outer scale might be beneficial to achieve to have the AO system best reject the
turbulence phase fluctuations, as well as understand the penalties of using a stationarity based predictor under
non-stationary conditions.

4. SIMULATIONS

We test three LMMSE predictors along with an integrator (zero-order predictor/no prediction) in an open-loop
configuration. We simulate an 11-by-11 Shack-Hartmann wavefront sensor (SHWFS), adding measurement noise
to the phase disturbance. We then feed the resulting phase screen (representing the atmosphere at time t) into
our predictors and apply the predicted correction (predicted wavefront to time t + 1) to a deformable mirror
with 97 actuators (DM97). We track the residuals to determine the performance of the predictors.

We do this for various input disturbances including: 1) stationary turbulence, 2) non-stationary turbulence
with varying Fried parameter only, 3) non-stationary turbulence with varying wind speed only. We run our AO
loop at 500 Hz for 4 seconds, we then average the root-mean-square error (rms) over 50 runs, regenerating the
phase screens with the same PSD.

4.1 Results

We initially test the stationary turbulence model with the atmospheric parameters in Table 4.1. From Figure 4,
we can see that the LMMSE predictor performs better than the integrator (no prediction) as expected, with the
LMMSE having a rms of 0.41 radians and the integrator having an rms of 0.54. This validates the added value
of prediction. The exact difference in performance is dependent on the wind speed, the spatial resolution, and
the length of the delay. We see that as the wind’s speed reduces, the integrator and LMMSE become closer in
performance. The batch and recursive LMMSE also have the same value when the batch predictor is turned on,
which indicates our LMMSEs are behaving properly. Finally, as we move further away from the batch training
period, the recursive solution becomes slightly better than the batch. As the recursive estimator continues to
run it obtains a more accurate estimate of the covariance matrices.

Using the stationary turbulence, we looked at the prediction vector found by the LMMSE. When we limit the
radius of points given to the algorithm to 2 grid points, the prediction vector easily finds the perfect predictor
-giving the full weighting to the correct point upstream – as expected from the Frozen Flow principle. When
using more grid points for prediction, the prediction algorithm has more trouble in finding the optimal solution
due to the increase of redundancy in the regressor data. This is impart due to strong spatial correlation of phase
between surrounding points. Therefore, the LMMSE is unable to distinguish a upstream phase point and finds an
average solution. An increase of measurement noise is expected to alleviate this issue. Overall, this demonstrates
the importance of selecting the regressor grid in relation to the amount of data required to converge.

We then vary the Fried parameter. Figure 5 shows that the Fried parameter varies only slightly (0.03% over
5 seconds) on such short time scales and the changes in the Fried parameter do not affect the solution for the
predictors as expected. However, such small variations in the Fried parameter likely cannot be seen due to the
injected measurement noise and the pixel scaling. Therefore, we also simulated large artificial ramps for the



Simulation name Fried parameter Wind speed Outer Scale Simulation Length

Stationary
turbulence

13 cm 7 m/s 30 m 5 seconds

Non stationary
turbulence- Fried

parameter 1

13.001 -13.004 cm 7m/s 30 m 5 seconds

Non stationary
turbulence- Fried

parameter 2

25 -5 cm 7m/s 30 m 5 seconds (1.5
second ramp)

Non-stationary
turbulence-wind

speed

13 cm 4 - 7 m/s 30 m 5 seconds

Table 1. Summary of input parameters for different simulations.

Figure 4. Residuals (res) of the LMMSE predictors and the integrator compared to the full uncorrected wavefront error
for stationary conditions with constant Fried parameter and wind speed.



Fried parameter value. In Figure 6, we show the results of changing the Fried parameter by 20 centimeters, from
D/r0 ∼ 5 to D/r0 ∼ 1, over a few seconds. We see a dramatic decrease in the rms for the LMMSE predictors,
the decrease for the LMMSE predictors is a factor of two larger than the integrator. We then study the behavior
of the prediction vector in time. We plot the evolution of the prediction coefficient (one value in the prediction
vector) for a few different phase points in Figure 7. We see that the prediction coefficients remain constant in
time with slight fluctuations. Therefore, the recursive LMMSE solution is not affected by the change in Fried
parameter. The decrease in rms followed by the increase in rms, Figure 6, is due to the overall decrease in
variance of the phase screen as the coherence length increases, making the phase screens more uniform. The
Fried parameter simulation results show that the regular fluctuations of the Fried parameter do no change the
performance and on time scales of a few seconds, the Fried parameter varies slowly and the disturbance rejection
remains unchanged.

Figure 5. Fried parameter varying according to an fractional ARIMA model.22

Figure 6. Fried parameter behavior exaggerated as a ramp feature.



Figure 7. The evolution of a prediction coefficient for 4 different phase points as the Fried parameter varies.

We vary the wind speed according to section 3.2. In Figure 8, we see that wind jumps of 1m/s (realistic
amplitude variations) can degrade the performance of not only the integrator but also the batch and recursive
LMMSE. The batch method, as expected, does not update and therefore does not see the changing statistics.
The recursive LMMSE, although it updates, cannot update fast enough to track the step in wind speed. In
Figure 8, the rms wavefront error for all the predictors increases by a factor of two for the recursive LMMSE, at
the second wind jump.

The tracking speed of the recursive approach is dependent on how long the prediction has been running; it
has ’unlimited’ memory and variations in the statistics are averaged into the estimator. Inserting an exponential
forgetting factor in the covariance estimation of the recursive LMMSE, we form an adaptive LMMSE. We can
see a very slight difference in the performance between the pure recursive and the forgetting factor recursive
method (we tested forgetting factor values from 0.99-0.90 with no notable differences, values smaller than this
cause numerical instabilities). However, we need more tests to quantify the added value of exponential forgetting
in the recursive prediction algorithm.

From these tests, we show that any form of the LMMSE can provide better performance than a no prediction
(integrator) approach but the LMMSE is not the optimal solution for varying atmospheric parameters. Due to
the non-stationary nature of turbulence induced phase, a basic adaptive approach that is easy to implement has
not shown a significant performance improvement. We need to understand specifically how the wind varies on
subsecond timescales. Armed with a better understanding of the winds behavior (expected amplitude of jumps),
we can begin to explore what type of predictor would be best. We can also begin to look at how information
from telemetry and SCIDAR techniques could be combined with predictions methods. We can then decide on
what adaptive approach should be best for HCI observations. The specific demands of the observing scheme
could be optimized as well. If short exposures (a few seconds or less) are being taken, then say a minute between
a set number of exposures could be used to recompute the predictor. If long term performance is needed, than
the predictor that performs most reliably should be employed.



Figure 8. Performance of the predictors for varying wind parameters.

5. CONCLUSION

We show that the performance of a predictor to remove residual phase errors due to the inherent time delay
in an AO system is dependent on how the wavefront disturbance behaves. We focus on understanding how
the non-stationarities of the atmospheric turbulence, specifically wind and Fried parameter, might affect our
predictors. We have described a method that can be used to model these non-stationarities and that the change
in Fried parameter can be modelled following Doelman.22 We show that using this model, the variations in
Fried parameter over short time scales do not change the performance of both the integrator and the LMMSE
predictors. Inserting wind gusts (into the simulation), we see that the integrator and the LMMSE predictors
are less efficient at rejecting the atmospheric turbulence corresponding to a factor of two increase in the rms
wavefront error. To further improve on the prediction performance, we need to need to better understand how
the wind speed evolves. We are currently focusing on developing a dynamical model to represent how wind might
behave near an observatory.

ACKNOWLEDGMENTS

The authors would like to thank Leiden University, NOVA, METIS consortium, and TNO for funding this
research.

REFERENCES

[1] Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafreniere, D., and Doyon,
R., “Direct imaging of multiple planets orbiting the star hr 8799,” 322(5906), 1348–1352 (2008).

[2] Beuzit, J.-L., Feldt, M., Dohlen, K., Mouillet, D., Puget, P., Wildi, F., Abe, L., Antichi, J., Baruffolo, A.,
Baudoz, P., Boccaletti, A., Carbillet, M., Charton, J., Claudi, R., Downing, M., Fabron, C., Feautrier, P.,
Fedrigo, E., Fusco, T., Gach, J.-L., Gratton, R., Henning, T., Hubin, N., Joos, F., Kasper, M., Langlois,
M., Lenzen, R., Moutou, C., Pavlov, A., Petit, C., Pragt, J., Rabou, P., Rigal, F., Roelfsema, R., Rousset,
G., Saisse, M., Schmid, H.-M., Stadler, E., Thalmann, C., Turatto, M., Udry, S., Vakili, F., and Waters, R.,
“Sphere: a planet finder instrument for the vlt,” Proc.SPIE 7014, 7014 – 7014 – 12 (2008).

[3] Macintosh, B., Graham, J. R., Ingraham, P., Konopacky, Q., Marois, C., Perrin, M., Poyneer, L., Bauman,
B., Barman, T., Burrows, A. S., Cardwell, A., Chilcote, J., Rosa, R. J. D., Dillon, D., Doyon, R., Dunn, J.,
Erikson, D., Fitzgerald, M. P., Gavel, D., Goodsell, S., Hartung, M., Hibon, P., Kalas, P., Larkin, J., Maire,
J., Marchis, F., Marley, M. S., McBride, J., Millar-Blanchaer, M., Morzinski, K., Norton, A., Oppenheimer,
B. R., Palmer, D., Patience, J., Pueyo, L., Rantakyro, F., Sadakuni, N., Saddlemyer, L., Savransky, D.,
Serio, A., Soummer, R., Sivaramakrishnan, A., Song, I., Thomas, S., Wallace, J. K., Wiktorowicz, S., and
Wolff, S., “First light of the gemini planet imager,” 111(35), 12661–12666 (2014).



[4] Jovanovic, N., Martinache, F., Guyon, O., C.Clergeon, Singh, G., Kudo, T., Garrel, V., Newman, K.,
Doughty, D., Lozi, J., Males, J., Minowa, Y., Hayano, Y., Takato, N., Morino, J., Kuhn, J., Serabyn, E.,
Norris, B., Tuthill, P., Schworer, G., Stewart, P., Close, L., Huby, E., Perrinand S. Lacour, G., Gauchet, L.,
Vievard, S., Murakami, N., Oshiyama, F., Baba, N., Matsuoand J. Nishikawaand M. Tamura, T., Lai, O.,
Marchis, F., Duchene, G., Kotani, T., and Woillez, J., “The subaru coronagraphic extreme adaptive optics
system: Enabling high-contrast imaging on solar-system scales,” Publications of the Astronomical Society
of the Pacific 127, 890 (Sept. 2015).

[5] Kasper, M., “Adaptive optics for high contrast imaging,” Proc.SPIE 8447, 8447 – 8447 – 10 (2012).

[6] Otten, G. P. P. L., Snik, F., Kenworthy, M. A., Keller, C. U., Males, J. R., Morzinski, K. M., Close, L. M.,
Codona, J. L., Hinz, P. M., Hornburg, K. J., Brickson, L. L., and Escuti, M. J., “On-sky Performance Anal-
ysis of the Vector Apodizing Phase Plate Coronagraph on MagAO/Clio2,” The Astrophysical Journal 834,
175 (Jan. 2017).

[7] Hardy, J. W., [Adaptive Optics for Astronomical Telescopes ] (July 1998).

[8] Petit, C., Conan, J.-M., Kulcsár, C., Raynaud, H.-F., and Fusco, T., “First laboratory validation of vibration
filtering with LQG control law for Adaptive Optics,” Optics Express 16, 87 (2008).

[9] Doelman, N., Fraanje, R., and den Breeje, R., “Real-sky adaptive optics experiments on optimal control of
tip-tilt modes,” 2nd Conference on Adaptive Optics for Extremely Large Telescopes 1(1) (2011).

[10] Poyneer, L. A., Palmer, D. W., Macintosh, B., Savransky, D., Sadakuni, N., Thomas, S., Véran, J.-P.,
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