

Microwave Kinetic Inductance Detectors for High Contrast Imaging with DARKNESS and MEC

Ben Mazin, June 2017

The UVOIR MKID Team:

UCSB: Ben Mazin, Seth Meeker, Paul Szypryt, Gerhard Ulbricht, Alex Walter, Clint Bocksteigel, Giulia Collura, Neelay Fruitwala, Isabel Liparito, Nicholas Zobrist, Gregoire Coiffard, Miguel Daal, James Massie

JPL/IPAC: Bruce Bumble, Julian van Eyken Oxford: Kieran O'Brien, Rupert Dodkins Fermilab: Juan Estrada, Gustavo Cancelo, Chris Stoughton

- A superconductor is a material where all DC resistance disappears at a "critical temperature". 9 K for Nb, 1.2 K for Al, 0.9 for PtSi
- This is caused by electrons pairing up to form "Cooper Pairs"
 - Nobel Prize to BCS in 1972

Superconductors

- Like a semiconductor, there is a "gap" in a superconductor, but it is 1000-10000x lower than the gap in Si
- Instead of one electron per photon in a semiconductor, we get ~5000 electrons per photon in a superconductor much easier to measure (no noise and energy determination)! We call these excitations quasiparticles.
- However, superconductors don't support electric fields (perfect conductors!) so CCD methods of shuffling charge around don't work
- Excitations are short lived, lifetimes of ~50 microseconds

MKID Equivalent Circuit

800

2000

Typical Single Photon Event

What is a Kinetic Inductance Detector?

We use a square microlens array to improve effective fill factor to $\sim 92\%$

Frequency Domain Multiplexing

Each resonator (pixel) has a unique resonant frequency in the GHz range

- A comb of sine waves is generated and sent through the device
- Thousands of resonators can be read out on a single microwave transmission line (FDM)

10 kpix DARKNESS Array

Funded to build 3 10-20 kpix instruments DARKNESS for Palomar and MagAO-X (NSF): On Sky! MEC for Subaru (Japan): 2017B PICTURE-C Balloon (NASA): 2019

LIBERTY

- New 20 kpix PtSi MKID array for Subaru SCExAO-MEC
 - 140x146 pixels, 150 micron pixel pitch, 22x22 mm imaging area

Array fabricated at UCSB by P. Szypryt and G. Coffard

Outstanding Issues

- Three main issues need improvement:
 - Pixel Yield
 - 75% in ARCONS
 - DARKNESS/MEC: Req. 85%; 95% goal
 - Spectral Resolution
 - R=8 at 400 nm in ARCONS
 - DARKNESS/MEC: Req. R=8 at 1000 nm; R=15 goal
 - Quantum Efficiency
 - ARCONS TiN: 40% at 400 nm, 15% at 1000 nm
 - DARKNESS/MEC PtSi: Req. 15% at 1000 nm; >25% goal
 - Attempting to improve yield and R first as they are the biggest impacts on the science we want to do
 - Exoplanet High Contrast Imaging from the ground is far from photon shot noise limited at the moment!

% Variation in Sheet Resistance from Center

- Software Defined Radio (SDR) Overview
 - Leverages massive industry investment in ADCs/FPGAs
 - Generate frequency comb and upconvert to frequency of interest
 - Pass through MKID and amplify
 - Downconvert and Digitize
 - "Channelize" signals in a powerful FPGA
 - Process pulses (optical/UV/X-ray) or just output time stream (submm)

Gen 2 Readout

- Designed in collaboration with Fermilab
- Based on Casper ROACH2 (Virtex 6)
- Uses dual 2 GSPS 12 bit ADC
- Reads out 1024 pixels in 2 GHz
- 2 boards per feedline in 4-8.5 GHz band
 - scalable to 30+ kpix
- Air to Water/Glycol heat exchangers
- Cost: ~\$5-10/pixel, excluding HEMT and FPGAs

IFU for Planet Finding

- Coronagraphs are limited by speckles from scattered and diffracted light
 - Speckles are *coherent* and chromatic and have a variety of lifetimes
 - Quasi-static: many minutes
 - Atmospheric: <1 second
 - Energy-resolving focal planes increase sensitivity by a factor of up to 10-100 (!)
 - Spectral Differential Imaging (SDI)
 - Temporal Speckle Statistics
 - Active Speckle Nulling
 - Removes requirement of a separate spectrograph
 - Gives the spectra of all planets in the dark box

 Data on brown dwarf HD1160B from Tim Brandt and CHARIS/SCExAO

DARKNESS

DARKNESS is the thesis project of Seth Meeker

DARKNESS Commissioning, July 2016

DARKNESS Commissioning, July 2016

Internal White Light Source

First On Sky Results: Pi Her in J-band

Mask Diam 6.6 λ /d

SAO 65921

Very preliminary RAW contrast w/Lyot Coronagraph

Charge 2 J-Band Vortex and P3K upgrades (higher Strehl) coming soon!

MEC is a 20 kpix version of DARKNESS for Subaru SCExAO

MEC

MEC is the thesis project of Alex Walter

MEC at SCExAO

Figure from O. Guyon and A. Walter

- Newly funded high contrast system for 6.5m Magellan Tel. in Chile
- Uses the same hardware and software infrastructure as SCExAO
- We are funded to bring DARKNESS for observations in ~3 years
- Proxima Cen b is at 38 mas and ~5e-8 contrast at 800 nm
 - We have a (very very long) shot!

Image Credit: Carnegie Observatory

Image Credit: ESO/M. Kornmesser

Planetary System Imager A second-generation TMT instrument concept Ben Mazin and Mike Fitzgerald for the PSI Collaboration

- GPI/SPHERE/SCExAO/P1640 show planets are rare past 10 AU
- Going inside 10 AU pushes us to large aperture and short wavelengths for a small IWA
 - $2\lambda/D$ for TMT at 1.3 micron = 10 mas!
 - 0.1 AU at 10 pc

Mazin Lab at UCSB http://mazinlab.org

- M star habitable zones at 10⁻⁸ contrast ratios
- 275 M stars within 10 pc
 - TRAPPIST-1 lots of rocky planets!
- 22 G stars within 10 pc
- 1 AU at 100 pc
 - Gas Giants at high spectral resolution
- 4.5 AU at 450 pc (Orion)
 - Planet formation

TMT Telescope Image Credit: TMT

M star habitable zone Image Credit: NASA/JPL-Caltech

Figure from O. Guyon

Habitable Zones within 5 pc (16 ly)

Star Temperature [K]

MKID-based HRMOS

- We can use MKIDs to sort the orders coming off an Echelle
 - No read or dark noise even into the near-IR
 - Huge benefits for faint objects!
 - No cross disperser
 - Compact, high throughput
 - Long linear arrays of MKIDs are pretty easy
 - Making 5 x 2048 arrays with 20 µm pixel pitch now!
 - Can make a R>20k multiobject spectrograph
 - 100+ simultaneous fibers?
 - Looking at this for "high dispersion coronography"
 - Earth analogues from TMT?

Original plot from J. Zmuidzinas

Backup Slides

PICTURE-C Balloon

- NASA Stratospheric Balloon Mission
 - 10 kpix MKID IFU
 - **550** nm
 - Vector Vortex Coronagraph
 - Search for Exoplanets and Exozodiacal disks
 - Flight demonstration for MKIDs and VV
 - Flight ~2019

Figures from O. Guyon

PtSi Quantum Efficiency

Quantum Efficiency

VACNTs could get QE to >99%!TKID design shown below

First Light, July 24 2016

Other Applications

- There are a significant number of other potential applications:
 - Satellite-based reconnaissance
 - X-ray beam line studies
 - Semiconductor process debugging (XRF)
 - Laser communications
 - Quantum Key Distribution
 - Biological Imaging (FRET, etc.)
 - Fundamental Physics/Dark Matter
 - Light Scalar Dark Matter!

Fractional Frequency noise of 3-2 CPW resonators

- We are now making high Q resonators using PtSi on sapphire
 - Resistivity: 50 μΩ cm
 - $T_c = 850 \text{ mK}$
 - We aim for 60 nm films with ~10 pH/sq inductance
 - Published in ApL
 - Szypryt *et al.* 2016

- Man man-years already invested, many more to go...
- Complex!
- Data format is HDF5, with each photon stored as a 64-bit packet
- van Eyken et al., ApJS 219, 14 (2015)
- Open source, available at github.com/bmazin/ARCONS-pipeline

Current Projects

- [Ongoing UVOIR MKID Development]
- [Ongoing X-ray TKID Development]
- DARKNESS Commissioned, now done 3 observing runs
- MEC Deploys to Subaru in the summer
- PICTURE-C Flies in 2019
- MagAO-X + DARKNESS Deploys in 2020

Future Projects

- KRAKENS Awaiting MRI funding decision, deploys 2021
- HRMOS lab demo in progress
- PSI TMT Second Generation Instrument team organized
- Giga-z Working with Fermilab on concept

Exoplanet Direct Imaging

• Are we alone?

- Our best estimate is that 5-25% of stars (and maybe every M dwarf??) have a ~Earth radius planet in their habitable zone!
- Most likely one around the nearest star Proxima Centauri b!

Coronagraphy

Adapted From Oppenheimer & Hinkley (2009), which adapted it from Sivaramakrishnan et al. (2001)

Active Speckle Nulling

F. Martinache et al., 2012