

High Stability Deformable Mirror for Open-Loop Applications

AO4ELT5, 27 June 2017

Urban Bitenc, Joseph Gallagher, Mickael Micallef, Sébastien Camet, Julien Charton, Tim Morris, Richard Myers

Outline

- DM requirements for open loop applications
- Technology of magnetic DMs
- How to ensure stability:
 - software method 1
 - software method 2
 - improved material: silicon springs
- Results of all three methods
- Conclusions

Open-loop DM control

- Key DM requirements:
 - linearity, no hysteresis, repeatability
 - DM keeps shape over hours

Interferometer image of a flattened DM.

SPRING

Spring material:
 polymer OR silicon

Main features of the DM97-15

- Pupil diameter: 13.5 mm
- Tip/tilpt stroke: 60 μm (wft)
- 3x3 stroke: 25 μm (wft)
- Settling time: 800 μs
- First resonance frequency: 800 Hz
- Hysteresis error: <2%
- Non –linearity error: <3%

Polymer springs

- Polymer material exhibits creep (time-delayed deformation under force)
- Physical model for polymer springs (Burger model)

• Very repeatable!

High-stability DM for open loop

Software compensation

IDEA:

Software compensation

RMS change in 3 hours: 80 - 90 nm RMS change in 3 hours: 2.5 - 6 nm

Optics Express Vol. 22, Iss. 10, pp. 12438–12451 (2014)

ET & CHAND

Software compensation - for a general use of the DM

• Change DM shape several times:

- The polymer will "remember" all these shapes
- Correct for all shapes from the past few hours: $\mathbf{B}_{\mathbf{N}}(t) = \mathbf{B}_{\mathbf{N}}(t_{N-1}) - \sum_{i=0}^{N-1} \Delta x_{i,N}(t) \cdot [\mathbf{B}_{\mathbf{N}} - \mathbf{B}_{\mathbf{i}}]$

Performance

• Compensating after changing shape 7 times; shape differences: 330 - 1060 nm RMS

Optics Express Vol. 25, Issue 4, pp. 4368-4381 (2017)

High stability: software solution

- Creep compensation per actuator
- The creep parameters can be estimated for any DM
- A feed-forward compensation can cancel the drift

- But a simple per-actuator model is not enough
 - Mechanical coupling must be taken into account

Compensation

Compensation

High stability: software solution

- Mechanical coupling can be:
 - Estimated using measurements or FEM simulations
 - Represented by a stiffness matrix Coupling

- Pre-compensation implementation is simple:
 - Low-pass filtering of the command vector
 - Every second:
 - One matrix-vector multiplication
 - A few exp()

High stability: performances

The software methods have comparable performance: 2% remaining instability

Spring material for high stability **ALPAO**

- Springs in regular DM are made of polymers
- For open-loop applications silicon is preferred
 - No plastic domain: extremely linear
 - Extremely stable (used for springs in high-end watches

High stability: performances

- Sequence of Zernike modes (open loop)
 - Up to 1µm peak-to-valley (270 nm RMS), over 1H30

High-stability DM for open loop

Silicon spring prototype: extreme amplitudes

High-stability DM for open loop

Conclusion

- Two options for high stability DM:
 - Polymer spring + software compensation
 - Silicon springs (more expensive)
- Both: excellent performance for open loop stability within 1%-2%
- Further ideas:
 - implement software method in drive electronics
 - combine both methods (for extremely high amplitudes)

Thank you

Impact Acceleration Account and ST/L00075X/1

Silicon spring prototype

DM commands **B**

DM commands **A**

High-stability DM for open loop

5

4

t

Shapes to test general creep compensation

Shape	difference [nm RMS]
B ₀ - A	636
B ₁ - B ₀ , B ₁ - A	554, 509
B ₂ - B ₁ , B ₂ - B ₀ , B ₂ - A	504, 445, 386
B ₃ - B ₂ , B ₃ - B ₁ , B ₃ - B ₀ , B ₃ - A	573, <mark>332</mark> , 657, 563
B ₄ - B ₃ , B ₄ - B ₂ , B ₄ - B ₁ , B ₄ - B ₀ , B ₄ - A	1058 , 658, 1022, 691, 669
B_0-B_4 , B_0-B_3 , B_0-B_2 , B_0-B_1 , B_0-B_0 , B_0-A	696, 650, 444, 553, 6, 633
C-B ₀ , C-B ₄ , C-B ₃ , C-B ₂ , C-B ₁ , C-B ₀ , C-A	505, 703, 656, 642, 567, 503, 478

- The shapes differ by 332 1058 nm RMS.
- Note that B0 is used twice, at the beginning and at the end. This is to test the repeatability.
 B₀

Software compensation

• Compensating the 6 intermediate shapes:

NO COMPENSATION: 90 - 200 nm RMS

WITH COMPENSATION: 7 - 13 nm RMS

Calibration for software compensation

Software compensation - terms in the equation

$$\mathbf{B}_{\mathbf{N}}(t) = \mathbf{B}_{\mathbf{N}}(t_{N-1}) - \sum_{i=0}^{N-1} \Delta x_{i,N}(t) \cdot [\mathbf{B}_{\mathbf{N}} - \mathbf{B}_{\mathbf{i}}]$$

Temperature

Temperature sensor inside the DM

