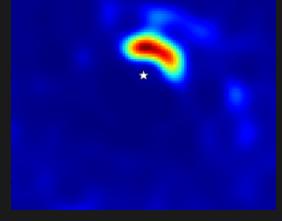
AO4ELT5 conference

Frantz Martinache

June 27, 2017

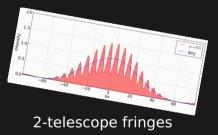



[image: NIRC2]

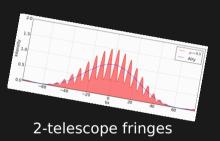
Frantz Martinache

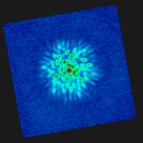
June 27, 2017 3 / 14

See through the diffraction

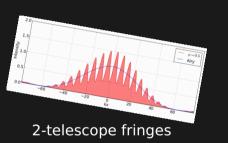

See through the diffraction

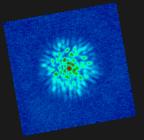
Better resolution? Faint structures visible?



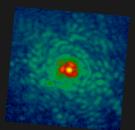

Interferometry: the diffraction queen

Interferometry: the diffraction queen





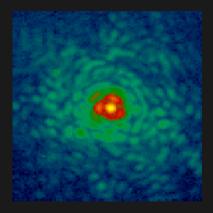
NRM-interferogram



Interferometry: the diffraction queen

NRM-interferogram

Conventional AO-corrected image


The nutty idea:

Apply interferometry recipes to regular images. Produce self-calibrating observables!

Frantz Martinache

June 27, 2017 4 / 14

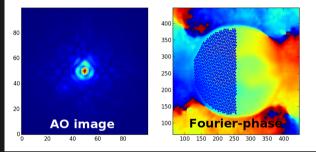
- the kernel: the object

- the kernel: the object
- the husk: the PSF

- the kernel: the object
- the husk: the PSF

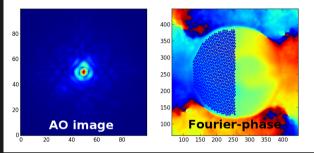
permitted by the KERNEL framework

- the kernel: the object
- the husk: the PSF

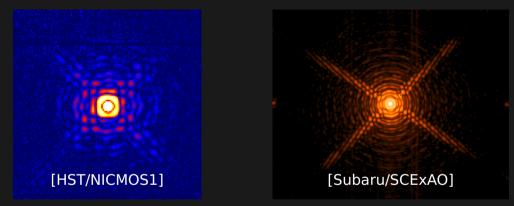

permitted by the KERNEL framework

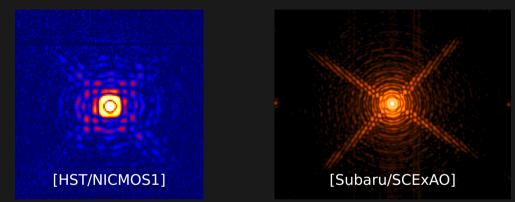
Martinache, 2010, ApJ, 724, 464 Martinache, 2013, PASP, 125, 926

Fourier analysis of "science" images

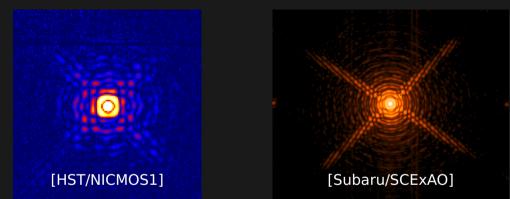

The principle: Instead of direcly using images, focus on the phase part of their Fourier counterpart

Fourier analysis of "science" images

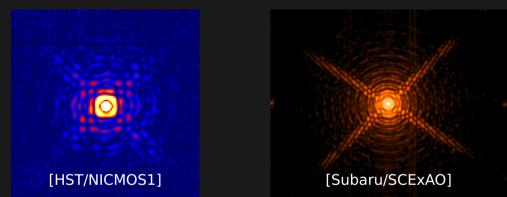

The principle: Instead of direcly using images, focus on the phase part of their Fourier counterpart


The convolution relation revisited $I = O \otimes PSF \Rightarrow \Phi = \Phi_0 + A \cdot \varphi$

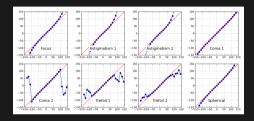
The ill-posed problem of image deconvolution becomes a well posed problem in terms of linear algebra



#1 low-aberration regime (upstream AO required!)



- #1 low-aberration regime (upstream AO required!)
- #2 unsaturated data (coronagraphy excluded!)

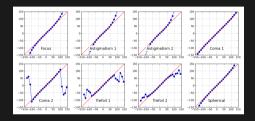


- #1 low-aberration regime (upstream AO required!)
- #2 unsaturated data (coronagraphy excluded!)
- #3 well-sampled images (should be mandatory anyways)

not almighty yet but relevant already

Application to SCExAO

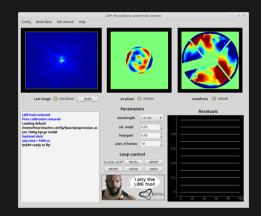
Use the science detector to correct the NCP error (low order modes)


The approach (H-band) is linear over a \pm 200 nm range of aberration.

Martinache et al, 2016, AA, 593, A33

not almighty yet but relevant already

Application to SCExAO



Use the science detector to correct the NCP error (low order modes)

The approach (H-band) is linear over a \pm 200 nm range of aberration.

Martinache et al, 2016, AA, 593, A33

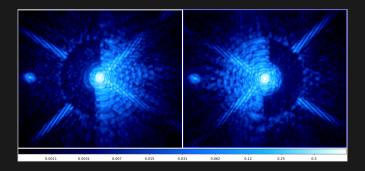
Closed-loop compensation of LWE

(talk by M. N'Diaye)

focal plane camera is the new WFS

"Give me a camera, sensitive and fast enough and a DM, and I shall beat the cr%p out of those bl**dy speckles!"

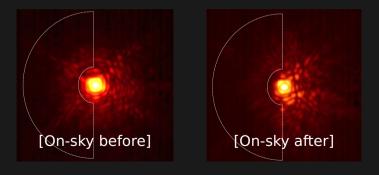
- AOchimedes -



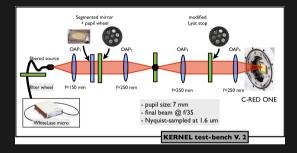
focal plane camera is the new WFS

"Give me a camera, sensitive and fast enough and a DM, and I shall beat the cr%p out of those bl**dy speckles!"

- AOchimedes -

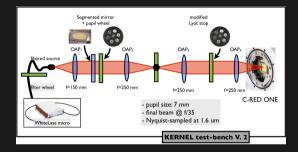


focal plane camera is the new WFS


"Give me a camera, sensitive and fast enough and a DM, and I shall beat the cr%p out of those bl**dy speckles!"

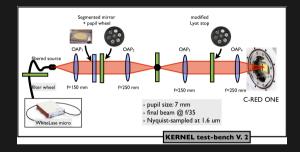
- AOchimedes -

- Hex 507 segmented DM (BMC)
- C-RED-ONE IR camera (FLI)

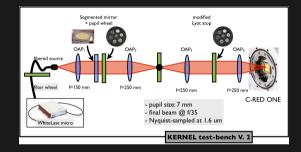




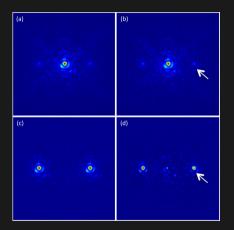
- Hex 507 segmented DM (BMC)
- C-RED-ONE IR camera (FLI)
- Hunt down systematics



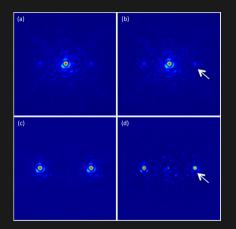
- Hex 507 segmented DM (BMC)
- C-RED-ONE IR camera (FLI)
- Hunt down systematics
- Optimize scientific yield



- Hex 507 segmented DM (BMC)
- C-RED-ONE IR camera (FLI)
- Hunt down systematics
- Optimize scientific yield
- Bypass its limitations



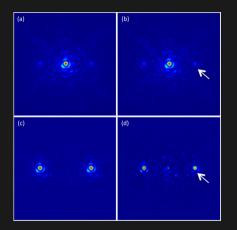
limitation #2: saturation


Working from the focal plane?

- large dynamic range required
- coronagraph destroys the reference

Jovanovic et al, 2016, ApJ, 813, 24

limitation #2: saturation


Working from the focal plane?

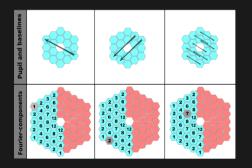
- large dynamic range required
- coronagraph destroys the reference
- cheat to bring the reference back
- use the DM to add incoherent speckles

Jovanovic et al, 2016, ApJ, 813, 24

limitation #2: saturation

ovanovic et al, 2016, ApJ, 813, 24

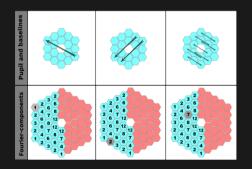
Working from the focal plane?

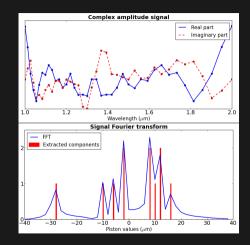

- large dynamic range required
- coronagraph destroys the reference
- cheat to bring the reference back
- use the DM to add incoherent speckles
- get the lost information there
- I! broad-band effects !!

limitation #1: capture range

Learn again from interferometry:

- spectrally dispersed information
- capture range: from $\sim\lambda$ to $\sim{\sf R}\lambda$
- the KERNEL framework still applies

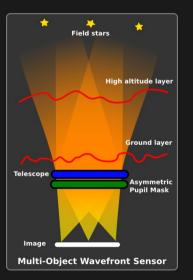




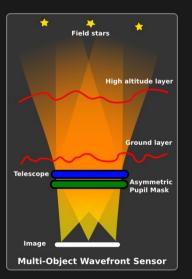
limitation #1: capture range

Learn again from interferometry:

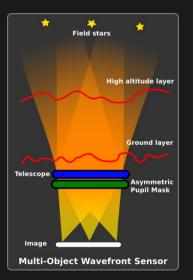
- spectrally dispersed information
- capture range: from $\sim\lambda$ to $\sim{\sf R}\lambda$
- the KERNEL framework still applies

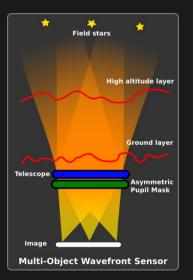

Martinache 2016, SPIE # 9907-36

Frantz Martinache



June 27, 2017 12 / 14


use the science camera only


- use the science camera only
- WFS $\Leftrightarrow \Rightarrow$ fringe tracking

- use the science camera only
- WFS $\Leftarrow \Rightarrow$ fringe tracking
- no NCP to worry about
- enhanced sensitivity to low-order modes
- do more than just flatten the wavefront
 - create a dark hole in an image
 - optimize injection into a fiber
 - no need to keep a WFS happy

- use the science camera only
- WFS $\Leftarrow \Rightarrow$ fringe tracking
- no NCP to worry about
- enhanced sensitivity to low-order modes
- do more than just flatten the wavefront
 - create a dark hole in an image
 - optimize injection into a fiber
 - no need to keep a WFS happy
- increase capture range: use multi- λ
- scales up nicely as a MOAO system?

Thank you!

Established by the European Commission

Looking for an exciting postdoc? Come and talk to me ASAP!

