

GRAAL on-sky performance with the AOF

J. Paufique,

with the large AOF team

within ESO in Europe and Chile

+ES+ who does it take?

- Sub-Systems Responsible:
- J.Paufique, P.LaPenna, E.Vernet, W.Hackenberg
- AO Specialists:
- M.LeLouarn, S.Stroebele, J.Kolb, N.Muller, A.Garcia-Rissmann, E.Marchetti
- Laser Specialists:
- D.Bonaccini Calia, T.Pfrommer, S.Lewis, P.Amico
- Mechanics:
- R.Conzelmann, R.Guzman, M.Quattri, P.Jolley, R.Ridings, J.A.Abad, C.Frank, J.Quentin
- Optics: Control:
- B.Delabre, B.Buzzoni L.Petazzi, S.Babak, F.Gago, S.Sandrock, N.di Lieto
- Electronics:
- M.Duchateau, A.Jost, I.Guidolin, L.Kern, G.Fischer, A.Haimerl, C.Soenke
- Detectors:
- M.Downing, J.Reyes, L.Mehrgan
- Software:
- M.Kiekebusch, M.Comin, R.Donaldson, P.Duhoux, J.Argomedo, D.Popovic, Industrial support: S.McClay
 NTE-SENER (main asset
- Integration:
- S.Tordo, J.-L.Lizon, C.Dupuy, J.-P.Kirchbauer, S.Huber
- Paranal Support:
- P.Haguenauer, P.Sansgasset, V.Heinz, Ralf, Joel, J.L Alvarez, P. Hibon
- Project Office:
- P.-Y.Madec, H.Kuntscher, J.-F.Pirard, R.Arsenault

27. June 2017, Tenerife AO4ELT5

2

"Sponsors"

N.Hubin, E.Fedrigo, G.Finger,

M.Cayrel, and...

The HAWK-I IoT

+ES+ What does it take...

GRAAL: a GReat Adaptive optics with Aof Lego

- 4 LGS, side-launched on a 11' diameter constellation
- 40x40 LGS-WFS, Shack-Hartmann, 5" FoV (x4)
- Secondary deformable mirror, 1170 actuators
- 6 arcmin off-axis TT sensor
- Maintenance mode (MCM): NGS-SCAO

SPARTA RTC

A GLAO-SCAO system at the VLT

expected performance

- Wide-field AO: Unobstructed field of view 7.5x7.5 arcmin²
- 30-40% reduction of FWHM (K-band)
- Enables an image quality better than 0.3" in Kband 25% of the time
- 100% sky coverage

27. June 2017, Tenerife AO4ELT5

5

+ES+ design

GRAAL embedded in HAWK-I:

- rotates with the field
- Is a very thin cylinder (300 mm thick)
- LGS on a pupil-tracking co-rotator => large motor and crammed cable wrap
 - TT-sensor on a 6-7 arcmin radius
 - Crosses Rayleigh beams
 - Complicated observation preparation
- SCAO mode including
 - > 40x40 WFS (identical to LGS)
 - Focal extender x6, maintaining back focal distance

A SCAO system at the VLT results

25

- Very first results obtained last December
- second run in February
- 70% on Naos for 1"seeing
- Removed faulty actuators SW-wise

- Best flat obtained and used in operation since then
- UT4 has now a (better) pupil sensor -> better UT4

+ES+ O Status: the tip of the iceberg

Most done in December, resuming in October

Large gain in FWHM, no surprise expected (confirmed with GALACSI, see J. Kolb's talk)

GRAAL Acquisition sequence

Preset of MUSE AOF Acquisition MUSE AOF acquisition telescope, Preset Phase 4LGSF, -X 4LGSF FS Preset motors, -X Telescope Preset RTC, HAWK-I 🕂 🕺 🕂 🕂 🕂 🕂 🕂 🕂 🕂 🕂 🕂 🕂 🕂 -X Deploy GALACSI mode Isable DSM simulation on RTC Wait for 1 🕂 4LGSF LPC Preset (set asterism) Act. Opt. AOF Preset correction 🖵 🛪 LGS WFS initial setup Tip/Tilt Sensor Bootstrap NGS 🕂 🕺 Tip/Tilt Sensor Camera Bootstrap 🕂 🕺 Sky map measurement acquisition Lズ NGS Detection and Centering

A GLAO system at the VLT

Status: the submerged part

- Pupil alignment: large variations (+/-70%),
 -> compensated by SW
- 4LGSF acquisition extremely robust with GRAAL, improved with GALACSI
- Degraded mode of operation tested (on purpose!) with 3 LGS-WFS, co-rotator components
- TT sensor focusing far from ideal, -> mechanical intervention
- Safety features glitches (WFS, cooling) -> adjusted
- Natural ageing of EM-CCD (gain loss of 40%), re-calibrated
- 4LGSF system availability not ideal (AAC, LPC, cables)

ES A GLAO system at the VLT

Status: the submerged part

- Pupil alignment: large variations (+/-70%), -> compensated by SW
- 4LGSF acquisition extremely robust with GRAAL, improved with GALACSI

11

+ES+ A GLAO system at the VLT single point of failure

A GLAO system at the VLT Status: the submerged part

- Pupil alignment: large variations (+/-70%), -> compensated by SW
- 4LGSF acquisition extremely robust with GRAAL, improved with GALACSI
- Degraded mode of operation tested (on purpose!) with 3 LGS-WFS, co-rotator components

A GLAO system at the VLT Status: the submerged part

- Pupil alignment: large variations (+/-70%), -> compensated by SW
- 4LGSF acquisition extremely robust with GRAAL, improved with GALACSI
- Degraded mode of operation tested (on purpose!) with 3 LGS-WFS, co-rotator components
- TT sensor focusing far from ideal, -> mechanical intervention
- Safety features glitches (WFS, cooling) -> adjusted
- Natural ageing of EM-CCD (gain loss of 40%), recalibrated
- 4LGSF system availability not ideal (AAC, LPC, cables)

ES+ Coming soon: resumed commissioning

- GRAAL installed in 2015, progressing very slowly since then (organization had higher priorities set elsewhere)
- GLAO briefly tested, will be really commissioned over Oct-Dec 2017
- SCAO demonstrated the capability of the DSM
- HAWK-I (adaptive) facility operation planned for Oct-2018