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Context

• Direct imaging and spectroscopy of exoplanets  
‣ VLT/SPHERE, Gemini/GPI, Subaru/SCExAO, etc 
‣ disks, warm or massive gas giant planets 
‣ high contrast (Δmag>10) at small separations (0.1”-0.5") 

• Instrument limitations 
‣ quasi-static aberrations  
‣ temporal stability 

• Need of a clean PSF for optimal starlight rejection  
‣ Calibration of pre-coronagraph aberrations
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Direct imaging of colder or lighter exoplanets

• Residual aberrations: 
‣ How to calibrate them? 
‣ Their origin? 
‣ Their temporal evolution? 

• Our solution: 
‣ Zernike wavefront sensor 
‣ N’Diaye et al. A&A 2013, 2016
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Zernike wavefront sensor

• Conversion of the phase aberrations into intensity variations  
‣ Ic=α sin φ + β 

‣ Small aberrations: Ic =αφ + β

A B C

Focal plane mask (FPM) 
π/2 phase shift

Entrance pupil Camera

N’Diaye et al. 2013
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Linearity range of the sensor

• Linearisation of the amplitude ➙ expression valid only near zero phase error 
• Limited capture range: -0.14 λ0 ➙ 0.36 λ0 

• Possible extension of the capture range in closed loop
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Implementation in VLT/SPHERE

ZELDA 

Zernike sensor for Extremely accurate measurements of Low-level Differential Aberrations
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Optics

• Our proposal:  
‣ ZELDA a concept based on 

phase-contrast technique

• Original measurement strategies: 
‣ VLT/SPHERE: off-line phase diversity 
‣ GPI: Mach-Zehnder interferometer behind 

coronagraph
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Current implementation in SPHERE

ZELDA 

Zernike sensor for Extremely accurate measurements of Low-level Differential AberrationsCPI

NIR corono / 
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J.-L. Beuzit’s talk 
Thursday morning
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ZELDA prototype in SPHERE

• Fused silica substrate 
• Mask by photolithographic  

reactive ion etching (SILIOS, France) 
• Within 1% of the specifications

Diameter D=70.7 µm 
Depth z=0.815 µm

Installation during SPHERE reintegration at Paranal in April 2014

λ=1.62 µm (H-band) 
F/40 beam

ZELDA in SPHERE  
coronagraph wheel

Measured mask profile
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Validating ZELDA in SPHERE

Z1 Z2 Z3 Z4 Z5

Z6 Z7 Z8 Z9 Z10

Zernike modes introduced with 400 nm PV on the DM 

• Internal point source 
• IRDIS pupil-imaging mode, λ = 1642 nm (Fe II filter) 
• PSF centered manually + closed loop on near-IR DTTS 
• Zernike and Fourier modes, amplitude ramps: -250 ➙ 600 nm PtV

N’Diaye et al. 2016
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Quantitative performance assessment

• theory vs. measurements:  
‣ excellent agreement! 

• low sensitivity to wavelength of measure
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NCPA measurement and compensation
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NCPA measurement and compensation

Before correction After correction
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Impact on coronagraphic images

Before calibration

0.85"

0.20"

Apodised pupil Lyot coronagraph, H-band

N’Diaye et al. 2016



After calibration
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Impact on coronagraphic images

Apodised pupil Lyot coronagraph, H-band

N’Diaye et al. 2016
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Contrast gain after ZELDA calibration

Before calibration

After calibration

x10 gain  
@ 0.2"

perf. limit of  
SPHERE  

coronagraph 

➙ZELDA will be used for NCPA calibration 
in SPHERE this year

N’Diaye et al. 2016



Towards ZELDA on sky

• internal NCPA calibration 
• calibrated reference 

slopes applied on-sky 

• on-par with 2015 
• 5-10 contrast gain 

• no gain in contrast! 
• reason unknown: 
‣ chromatic beam-shift? 

‣ near-IR ADCs? 

‣ amplitude aberrations?

New tests in March 2017
Procedure

Internal	performance

On-sky	performance

16Vigan et al. in prep
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ZELDA in E-ELT/HARMONI high-contrast mode

• Goal: 
‣ spectro-imaging of young giants 
‣ R=3000-20000 ; 10-6 contrast at 0.2’’ 

and closer, in H & K bands 

• No ADC in the instrument: 
‣ Dispersed beam & PSF 
‣ SCAO sensing at 0.8 um &  

science at 1.45-2.45 um:  
‣ significant NCPA 

• ZELDA @ 1.25 um, prospects: 
‣ NCPA calibration: less constraints on 

surface quality of upstream optics 
‣ Pupil centering follow-up (0.5% 

accuracy): good for pupil masking 
‣ Fine E-ELT cophasing

Courtesy from A. Carlotti (IPAG)

Opto-mechanical design of  
high-contrast module



• Fine phasing sensor  
in diffraction-limited regime 
‣ For each segment, 

measurements of piston, tip, tilt 

  
• ZELDA-Phasing sensor 
‣ Mode estimation  

with nanometric accuracy 
‣ Closed-loop wavefront control  

for fine segment alignment 
‣ promising option  

for fine cophasing of ELTs

19

ZELDA-Phasing Sensor

Janin-Potiron et al. 2017

Closed-loop control of combined piston, tip-tilt 

ZELDA-PS: principle

91 segment configuration
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Conclusions

• ZELDA for the calibration of residual aberrations 
‣ easy to manufacture 

‣ simple alignment 

‣ no calibration required 

‣ fast and straightforward data analysis 

• Validation in VLT/SPHERE 
‣ excellent agreement between measurements and theory 

‣ NCPA compensation: gain x10 in contrast at 0.2" 

‣ implementation in the calibration plan of SPHERE in 2017 

• Powerful diagnostic tool for current and future AO facilities 
‣ internal and on-sky measurements 

‣ several SPHERE examples: low-wind effects, internal turb., derotator behavior

Quasi-static 
speckles


