Calibration of residual aberrations in coronagraphic instruments with ZELDA: validation in VLT/SPHERE

Arthur Vigan (LAM), Mamadou N'Diaye (Observatoire de la Côte d'Azur)

K. Dohlen, A. Caillat, A. Costille, P. Blanchard, J. Le Merrer,
D. Le Mignant, F. Madec, G. Moreaux (LAM)
J.-F. Sauvage, T. Fusco (ONERA), J. H. Girard, G. Zins (ESO)
J.-L. Beuzit, D. Mouillet, A. Carlotti (IPAG)
P. Janin-Potiron, P. Martinez, M. Carbillet (Observatoire de la Côte d'Azur)

AO4ELT5 Tenerife - 28/06/2017

Context

- Direct imaging and spectroscopy of exoplanets
 - VLT/SPHERE, Gemini/GPI, Subaru/SCExAO, etc
 - disks, warm or massive gas giant planets
 - high contrast (Δmag>10) at small separations (0.1"-0.5")
- Instrument limitations
 - quasi-static aberrations
 - temporal stability

- Need of a clean PSF for optimal starlight rejection
 - Calibration of pre-coronagraph aberrations

Direct imaging of colder or lighter exoplanets

- Residual aberrations:
 - How to calibrate them?
 - Their origin?
 - Their temporal evolution?

- Our solution:
 - Zernike wavefront sensor
 - N'Diaye et al. A&A 2013, 2016

Zernike wavefront sensor

- Conversion of the phase aberrations into intensity variations
 - Ic=a sin ϕ + β
 - Small aberrations: Ic = $a\phi + \beta$

Linearity range of the sensor

- Linearisation of the amplitude → expression valid only near zero phase error
- Limited capture range: -0.14 $\lambda_0 \rightarrow 0.36 \lambda_0$
- Possible extension of the capture range in closed loop

Implementation in VLT/SPHERE

ZELDA

Zernike sensor for Extremely accurate measurements of Low-level Differential Aberrations

- Original measurement strategies:
 - VLT/SPHERE: off-line phase diversity
 - GPI: Mach-Zehnder interferometer behind coronagraph

- Our proposal:
 - ZELDA a concept based on phase-contrast technique

Current implementation in SPHERE

ZELDA prototype in SPHERE

- Fused silica substrate
- Mask by photolithographic reactive ion etching (SILIOS, France)
- Within 1% of the specifications

Installation during SPHERE reintegration at Paranal in April 2014

Validating ZELDA in SPHERE

- Internal point source
- IRDIS pupil-imaging mode, $\lambda = 1642$ nm (Fe II filter)
- PSF centered manually + closed loop on near-IR DTTS
- Zernike and Fourier modes, amplitude ramps: -250 → 600 nm PtV

Zernike modes introduced with 400 nm PV on the DM

Quantitative performance assessment

NCPA measurement and compensation

30 nm RMS

NCPA measurement and compensation

45 nm RMS

30 nm RMS

Impact on coronagraphic images

Apodised pupil Lyot coronagraph, H-band

Impact on coronagraphic images

Apodised pupil Lyot coronagraph, H-band

Contrast gain after ZELDA calibration

→ZELDA will be used for NCPA calibration in SPHERE this year

Towards ZELDA on sky

Towards ZELDA on sky

ZELDA in E-ELT/HARMONI high-contrast mode

Opto-mechanical design of high-contrast module

- Goal:
 - spectro-imaging of young giants
 - R=3000-20000 ; 10⁻⁶ contrast at 0.2" and closer, in H & K bands
- No ADC in the instrument:
 - Dispersed beam & PSF
 - SCAO sensing at 0.8 um & science at 1.45-2.45 um:
 - ▶ significant NCPA
- ZELDA @ 1.25 um, prospects:
 - NCPA calibration: less constraints on surface quality of upstream optics
 - Pupil centering follow-up (0.5% accuracy): good for pupil masking
 - Fine E-ELT cophasing

ZELDA-Phasing Sensor

ZELDA-PS: principle

Closed-loop control of combined piston, tip-tilt

- Fine phasing sensor in diffraction-limited regime
 - For each segment, measurements of piston, tip, tilt
- ZELDA-Phasing sensor
 - Mode estimation with nanometric accuracy
 - Closed-loop wavefront control for fine segment alignment
 - promising option for fine cophasing of ELTs

Conclusions

• ZELDA for the calibration of residual aberrations

- easy to manufacture
- simple alignment
- no calibration required
- fast and straightforward data analysis

• Validation in VLT/SPHERE

- excellent agreement between measurements and theory
- NCPA compensation: gain x10 in contrast at 0.2"
- Implementation in the calibration plan of SPHERE in 2017

Powerful diagnostic tool for current and future AO facilities

- internal and on-sky measurements
- several SPHERE examples: low-wind effects, internal turb., derotator behavior

