PASS - a Permanent All Sky Suvey for the Detection of Transits

Hans J. Deeg ${ }^{1}$, Roi Alonso ${ }^{1}$, Juan Antonio Belmonte ${ }^{1}$, Khalid Alsubai², Laurance Doyle ${ }^{3}$
${ }^{1}$ Instituto de Astrofsica de Canarias, Spain, ${ }^{2}$ Univ of St Andrews, Great Britain, ${ }^{3}$ SETI Institute, USA

Fig. 1 Schematic view of the PASS experiment, here drawn with 10
cameras. The box in the background is the removable endosure.

Fig. 3 (on left). Temporal coverage in dependence of declination, assuming a yearly
tota of 1500 hours of clear observing conditions (200 nights of 7.5 hours) tor a site at 8.5. N . Coverage varies much less with right ascension, oue 10 variaions in night lengths and weather conditions through
average for stars at any right ascension.
fed line: coverage from a uniform minimum altitude of 30 above horizon. The North Pole, at an elevation of 28.5 , is not covered.
blue line: coverage by the 15 camera system shown in Fig. 2 . A small region around tee celestial Notth Pole is now circumpolar by lowering the alitiude limit to 27 , at very
tigh northern declinations.

 site both with 30 al altitude limits. If nighthours do not overlap among the sitits. coverage
near the celestial equator will be the sum from both sites, and a relatively unito near the celestial equator will be the sum from both sites, and a relatively uniform
coverage is achieved over the entire sky.

Fig. 5. Probability that transiting planets will be detected by observing at least 3 transis
The green line shows this probability for a contiguration of two arrays, based on 650 hours of ocoverage pery year coompare to Fig. 4.). The blue line is tor a single array, based
on 400 hours per year. The left side, tor periods up to 7 days, is based on observations trom a single eason, whereas for periods of $7-50$ days, observations spanning 3 yea
orview
visible sky from one or more locations, tor the detection of planetany transits and of any other transient phenomena in the sky

objecives.

Detection of giant planet ransits of all stars in the sky, with a magnitude limit of V -
10.5. About
Detection of any temporal astronomical phenomena:
*etection and follow-up of stellar variabilities with low amplitudes (up to 0.1%, depending on stellar brightness and frequency)
-variable stars of any kind - variable stars of any kin
-flares

FDetection of supernovae
Recording of frequency and direction of meterites Hotection of optical counterparts to gammer rays a
Sky quality and meteorological statistics:
Recording of sky brightress and extinction in all directions
PPercentage of clear sky clouds ¥Perentige of clear sky, 1 lounds
\#eetection of satellites and airpla Fotetection of satellites and airplanes (intusions into protected sky area over
observatory)

Concept:
An anay of wide angle CCD cameras, with commonly available optiscs (\mathcal{F} 50mm) for
photographic cameras and CCD cameras available for avvanced amateurs, that would
 has the advantages of mechanical simplicity and avoids any guiding errors, as stars wil
move over exactly the same pixels sever night, which allows a very precise calibration of
pixel, and inter-pixel response tunctions. Only the pst of the

 that is completelely removable (Fig. 1).

The system:
A system based on $\mathrm{f}=50 \mathrm{~mm} / 1 \mathrm{t} .4$ lenses for common high quality 36 mm SLR cameras
(Canon or Nikon for example), with a Kodak KAF--1001E CCDs of $24.6 \times 24.6 \mathrm{~mm}$ size and 1024 pixess (avaiabee with cooling and electronss from several vendors) would have
field of view (fove of 28.5. Fig. 2 shows that 15 cameras of that type give neary complete coverage of the sky above 30, altitude. The experiment would need to be mounted on a completely removable enclosure with a size of about $2 \times 1.5 \times 1.5 \mathrm{~m}$. With a pixel sizz of about 100 , an adj
every two months.
Images with exposure times of about 60 seconds will be co-added and saved to disk every
500 seconds.
The experiment will thus generate about $7-800$ images every night, each with a size o
Mbytes. The nightly total of $1.5-2$ Gbtes of data can be saved on a single DVD disk.

Coverage:

The sky above 30 allitude has a spatial angle of $\Omega_{, 33}=1 \pi \mathrm{rad}$. Thus, anytime a a of the
entire sky will be observed. The amoun of time that a star can be oserved duving the course of ay ear depends primarily on its declination and on the observatory s geographical
latitude (Fig. 3). Coverage at high northen latidues denends criticall
 declines rapidly towards southern declinations.
Coverage of southern declinations could be achieved from a similar observatory located at
$30-40$ is, that ideally should be located at an opposing longitude (Australia, for example). For stars near the celestial equator, the coverage with such an observatory in an antipodal For stars near he celestial equator, the coverage with such an obsenvaiory in an antipodal instuments, , high detection probabilities of transtining planets,
can be to to severeral weeks period

Numbers of stars surveyed and expected planet detections
Within the bright stars ($V<12$), abouthalf are Main Sequence stars. From a single northern locain the bright stars $(\mathbb{}<12$), abouthaf are Main Sequence stars. From a single northern
lo southem declination limit of -7.5 i , about 65% of the entire sky would be location with a southem decination limit of 47.5 , about 65% of the entire sky would be
observable with a coverage of better then 400 hrssyr . Whth 3 years of observations.
coverages of at least 1200 hours should be achieved. coverages of at least 1200 hours should be achieved, which will allow the detection of
planets of orbits of less then 15 days if 6 transit events are required. Longer coverages would increase the accessible orbitial periods, and lower to some extent the size limit on
detection due to the presence of more transits.
Such an array could survey about 250000 stars to magnitudes of $V \sim 10.5$ with sufficien
precision for the detection of giant planet transits (photometry of better then 0.7%). Assuming that 1% of all MS stars have close giant planets, and that their probabbility for

An ideal complement would be a similar array in the southem hemisphere, to obtain a true
all-sky survey (of about 400000 stars), with greatly improved coverage near the celestial an-sky survey (of about 400000 stars), with greatly improved $\mathbf{c o v}$.
equator. This should increase the amount of detections by $50-90 \%$. Due to the brightness of the sample stars, planets detected by such an array would
also constitute the best sample for any detailed follow-up studies.

Simulations and photometry
Fig. 6 shows a simulated field as observed by one of PASSs camera and the sequence
to derivo to derve the aperture masks. Simple aperture photometry through these masks was
pertormed. The photometric precision shown in Fig. 7 gives the error trom measuring the same simulated stars in these apertures in 10 frames (comparable to observing the sarie field in 10 nights at the same sidereal time). This takes into account photon noise from

PAss-zero

Funding to build a prototype with one CCD camera has recently been approved by the Spanish Science Ministry. The principal aim is a teasability study, outtining the capabiitites
of the instrument in all aspects. The prototyee will also serve to generate real data that
 pipeline. TTis protorype is expect.
the Obsv. de Teide of the IAC.

Fig. 2 Local all-sky view from a location at 28.5 N, , showing camera positions for a system
of 15 units (each with a field of view of $28 ; \times 28 i$), in orthogonal proiection. Coordinate lines
 up, there is no coverare belew declinations of -17.5 ;, as good temporal coverage of stars
futher south cannot be obtained (see Fig. 3). Further north, the sky is completely covered

fig. 6 . Left: simulated PASS star field for an exposure of 60 seconds. The size of the
field is about 2×2 degree. The brightest star is of 4 th mag, several have $6-7$ mag, and hie faintest ones are $14-15 \mathrm{mag}$. The red boxes over the brightest stars shows how the aperure mask is being build up, starting with the brightest stars. Right: final apertu

Fig. 7. Photometric error that has been achieved in 10 simulated images with the apertures of Fig. 5 . Errors that are too good result from the blending of a bright star
within a faint stars aperture. Photometric errors suitable for transit-detection can be expected u po $\mathrm{V}^{\vee} 11$

