ASSEMBLYING STELLAR HALOES IN MASSIVE ETGS AT Z~0.65 IN HVDF

HOW TO VSE HVDF FOR "LOCAL" VNIVERSE STVDIES

OK

Fernando Buitrago and Ignacio Trujillo

instituto de astrofísica e ciências do espaço 1

From Van der Wel et al. (2014)

OBSERVATIONAL PROBLEMS

Surface brightness dimming at high-z
The factor (1+z)⁻⁴ => +10 log (1+z)

 Early Type Galaxies (ETGs) have very concentrated profiles: wings quickly buried beneath bckg noise

OBSERVATIONAL PROBLEMS

z = 0.65

Surface brightness dimming at high-z
The factor (1+z)⁴ => +10 log (1+z)

SOLUTIONS AT LOW-Z

- STACKING (Zibetti+04, Tal & Van Dokkum 2009, La Barbera +12)
- DEEP PHOTOMETRY (Zibetti & Ferguson 2004, Van Dokkum 2005, Atkinson+13, Trujillo & Bakos 2013, Duc+15)
- DEEP SPECTROSCOPY (Coccato+10)
- STELLAR COUNTS (Crnojevic+13, Rejkuba+14)

WHAT DO WE KNOW?

~70% of nearby ETGs are tidally disrupted
The observed features are red and extended
Assembled via red and dry merger
Very large number of potential satellites

(PI Ellis & McLure) Ellis et al. 2012 Koekemoer et al. 2012

x2 in WFC3, x4 in Y₁₀₅, first time J₁₄₀

+ ACS optical coverage

653 orbits 5σ~30 mag"²

CAUTION : Providing the right data reduction, our deep high-z extragalactic deep & wide surveys could be key to understand the low-z Universe

MASS AND LIGHT CUMULATIVE DISTRIBUTIONS

MASS PROFILES

THE IMPORTANCE OF STELLAR HALOES IN SIMULATIONS Based on Cooper et al. (2013) simulations

AMOUNT OF MASS IN ONGOING MERGING

Galaxy name	Mass in residuals M_{\odot}	% of galaxy's mass
HUDF-1	$9.72 {\pm} 0.88 {\times} 10^8$	$3.7{\pm}0.3$
HUDF-2	$5.57 {\pm} 0.29 {\times} 10^9$	$8.5 {\pm} 0.5$
HUDF-3	$2.55 {\pm} 0.20 {\times} 10^9$	3.2 ± 0.3
HUDF-4	$1.21{\pm}0.74{\times}10^9$	$1.9{\pm}1.1$
HUDF-5	$8.82 {\pm} 0.33 {\times} 10^9$	$5.6 {\pm} 0.2$
HUDF-6	$1.13 {\pm} 0.20 {\times} 10^{10}$	$4.2 {\pm} 0.7$
Total	-	4.5 ± 0.3

In agreement with close pairs estimations (see Ferreras et al. 2014)

CONCLUSIONS

- ACDM predicts minor and major merging ubiquous, specially for massive galaxies
 - ETGs should grow inside-out
- Stellar haloes in ETGs... at <z> = 0.65!!
- Smooth surface brightness profiles up to 29 mag arcsec⁻²
- 10-20% mass at 10 < R < 50 kpc, as opposed with late-types (<10%)
- 5% of the galaxy mass in ongoing mergers STAY TUNED FOR BUITRAGO ET AL. (2015a,b)