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Observational evidence

More than 20 years ago, negative metallicity gradients were discovered in
both early- & late-type galaxies (e.g. Davies+93, Carollo+93, Wyse&Silk89, Vila-Costas+92)
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Nowadays, thanks to more elaborated techniques, metallicity gradients in
early-type galaxies can be measured out to large radii, > 1 Reff, (e.g. LaBarbera

+12, Greene+13, Pastorello+14) log(R/R.)
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Theorétical work

Metallicity gradients can emerge from

Late-type, disk galaxies galaxies:

» Insitu star formation due to continuous infall of metal-poor gas onto
the disk, which can be turned into metal-poor stars, inside-out
gI’OWth (e.g. Steinmetz&Mueller+94, Chiappini+01, Pilkington+12)

Massive, early-type galaxies:
» Insitu star formation dominant at higher z

» Late-time accretion of stellar material at large radii in collisionless

minor mer%?rs (e.g. Villumsen+83, HOD: Moster+13, Behroozi+12, SAMs: DeLucia+07,
Guo&White08 zrschmann+12 Sims: Oser+1 0, Lackner+12 Gabor+12, Hirschmann+1J3)

» “Minor merger picture” successful in predlctmg a strong size

evolution, 1ncreas1n§ Sersic index and hl% er DM fractions
(e.g. Naab+09, Oser+12, Hilz+12, Hilz+13)

» Stellar systems accreted onto already formed early—type galaxies
may affect metallicity gradient? To be tested!
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Use high-resolution cosmological zoom simulations
to understand the origin of observed gradients of massive gal’s:

Can we see an effect of the stellar accretion in minor mergers?
What is the differential impact of environment and feedback?

Can a comparison with observations help to constrain uncertain
models for feedback processes?
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Model for stellar-driven winds
Impact of stellar-driven galactic outflows on massive
galaxies (>2el11 Mo)

in cosmological zoom simulations of massive galaxies
Wlth Xspatial= 400pC, mMdm = 2.5*1071\/.[@ & mgas = 4.2*1O6M®

Empirically motivated
model for momentum

driven winds

(Oppenheimer & Dave, 2006/ 08,
Murray+05, Martin’05)
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Stellar accretion history

of massive galaxies (>2el11 Mo)

No galactic, stellar-driven winds With galactic outflows
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They assemble through (minor) mergers with smaller galaxies
which are strongly affected by stellar feedback

pdelayed star formation

»p smaller stellar masses

»lower metallicity

»p smaller amount of accreted stellar mass



Stellar mass- meta111(31ty relation
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Stellar metallicity protiles

of massive galaxies (>2el11 Mo)
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iéity profiles

of massive galaxies (>2el11 Mo)
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The role of stellaf accretion

...Tor steepening stellar metallicity profiles in the
stellar-driven feedback model
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The role of stellai; accretion

..for steepening stellar metallicity profiles in the
stellar-driven feedback model
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shaping the stellar population (metallicity & color) gradients at

large radii
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..for steepening stellar metallicity profiles in the
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Moel for AN—driven winds

~Mass, momentum and energy input (conservation) into the surrounding

gas motivated by observations of broad absorption line winds,
vw = 10,000km/s, €r= 0.005

Ostriker+10, Choi+13/ 14

Gas
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So far, two zooms of massive halos with Mhnaio~1e13 Mo (Xspatiat = 100pc, Mgas=6.6e4 Mo)



Stellar metallicity &wage profiles
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» By up to one order of
magnitude reduced SFRs

» AGN winds can affect stellar,
stellar metallicities and ages out

to 8 Refr
» Older stellar populations

» Steeper inner gradients (-0.1-

-0.2 dex/dex at <1Ref) due to
inside-out growth & AGN fb

» Stellar accretion still steepens
the outer metallicity gradients
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Conclusions
A T

Energetic phenomena are essential for forming realistic
galaxies with respect to stellar population profiles

» Stellar feedback can strongly influence massive galaxies wrt

integrated and spatially resolved the stellar populations at large
radii (> 2 Rer)

» AGN feedback affects stellar populations in massive galaxies,
particularly strongly the central region within 2 Resr

» Superimposed effect of environment, in form of mergers, at
large radii, “minor merger picture” confirmed

» Individual merger history responsible for the diversity in the
gradients: flattening by major mergers (in agreement with Kobayashi+04),
but steepening by minor mergers
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Future:

» Construction of a statistically complete sample of cosmological
zoom simulations of massive galaxies (>3ell Ms) with

unprecedented high resolution
» Including further AGN feedback mechanisms (radiative-X-ray)

» Gas metallicity gradients, creating synthetic emission line maps

by coupling zooms to new-generation stellar evolution models
(w. S. Charlot)



