The structure of galactic discs in the STAGES survey: probing the drivers of galaxy evolution

David Maltby, Alfonso Aragón-Salamanca, Meghan Gray EWASS 2015, Tenerife

UNITED KINGDOM · CHINA · MALAYSIA

The structure of galactic discs in the STAGES survey: probing the drivers of galaxy evolution

David Maltby, Alfonso Aragón-Salamanca, Meghan Gray EWASS 2015, Tenerife

Overview

- 1. The effect of the galaxy environment on the structure of galactic discs
 - Implications for galaxy evolution in different environments
- 2. The structure of galactic discs in spiral and S0 galaxies
 - Implications for morphological evolution (Spiral → S0)

UNITED KINGDOM · CHINA · MALAYSIA

The galaxy environment

• Environmental correlations:

Environment	Galaxy property		
	Colour	Star formation	Morphology
High-density	Red	Passive	Early-type
Low-density	Blue	Star- forming	Late-type

- However, 'correlations' do not necessarily imply causality.
 - → Nature vs. Nurture Hypothesis
- Disc structure and environment
 - 'fragile' outer stellar disc may show signatures of 'strong' environmental processes – those that can disrupt the stellar distribution.

Structure of galactic discs

• Disc galaxies are comprised of *two* main structural components:

- However, this simple picture *does not* hold for most disc galaxies in the universe.
- Exponential component often *broken* and best described by a two slope model (*Pohlen et al. 2002*).

Structure of galactic discs

Type I No break or simple exponential **Pure exponential**

Type II Down-bending break in exponential region *Truncation*

Type III Up-bending break in exponential region *Anti-truncation*

SDSS: Pohlen & Trujillo 2006

Structure of galactic discs

• The abundance of profile types: for *local field galaxies* (S0-Sdm)

(Pohlen & Trujillo 2006; Erwin et al. 2008; Gutiérrez et al. 2011)

Shows a strong dependence on morphology:

Type I: more frequent in *early*-types Type II: more frequent in *late*-types Type III: more frequent in *early*-types

^{1.0} Gutiérrez et al. 2011 ^{0.8} ^{0.6} ^{0.4} ^{0.2} ^{0.0} ^{0.4} ^{0.2} ^{0.0} ^{0.4} ^{0.2} ^{0.0} ^{0.0} ^{0.4} ^{0.5} ^{1.0} ^{1.0} ^{0.6} ^{1.0} ^{1.0} ^{1.0} ^{0.6} ^{1.0} ¹

STAGES

Space Telescope A901/2 Galaxy Evolution Survey

- A multi-wavelength survey spanning a wide range of galaxy environments.
- Contains the Abell 901/2 multicluster system at *z* ~ 0.167.
- V-band HST/ACS imaging
 - Surface brightness μ(r) profiles for ~600 galaxies
- Photometric redshifts (COMBO-17)
 + visual Hubble-type morphologies

Environment

- *Cluster galaxies:* photo-*z* selection based on the likelihood of cluster membership ($z_{cl} = 0.167$)
- Field galaxies: photo-z selected to avoid the cluster (Note: will include poor galaxy groups)

STAGES

Space Telescope A901/2 Galaxy Evolution Survey

- A multi-wavelength survey spanning a wide range of galaxy environments.
- Contains the Abell 901/2 multicluster system at *z* ~ 0.167.
- V-band HST/ACS imaging
 - Surface brightness μ(r) profiles for ~600 galaxies
- Photometric redshifts (COMBO-17)
 + visual Hubble-type morphologies

Environment

- *Cluster galaxies:* photo-*z* selection based on the likelihood of cluster membership ($z_{cl} = 0.167$)
- Field galaxies: photo-z selected to avoid the cluster (Note: will include poor galaxy groups)

STAGES

Space Telescope A901/2 Galaxy Evolution Survey

- A multi-wavelength survey spanning a wide range of galaxy environments.
- Contains the Abell 901/2 multicluster system at *z* ~ 0.167.
- V-band HST/ACS imaging
 - Surface brightness μ(r) profiles for ~600 galaxies
- Photometric redshifts (COMBO-17)
 + visual Hubble-type morphologies

Environment

- *Cluster galaxies:* photo-*z* selection based on the likelihood of cluster membership ($z_{cl} = 0.167$)
- Field galaxies: photo-z selected to avoid the cluster (Note: will include poor galaxy groups)

• Within **STAGES**, for all disc morphologies (**S0-Sd**) the frequency of profile types are the *same* in both the field and cluster environments.

Disc structure & environment The abundance of profile types • An intriguing discrepancy for Type II S0s! Erwin et al. 2012 0.8 Fraction (All S0) 70 90 Virgo - Erwin et al. (2012): an absence of Type II S0s in the cluster ONLY! Field 0.2 - STAGES: an absence of 0.0 Type I Type III Type II Type II S0s in **both** the Disk Profile Type field and cluster. Field **STAGES**

0.8

Fraction (All S0)

0.2

Field

Type I

Cluster

Type II

Disk Profile Type

Type III

Cluster

• A possible explanation:

- In **STAGES**, the S0 bar fraction is much lower than in *Erwin et al. (2012).*
- Bar related truncations (Type II-OLR) largely absent from STAGES S0s.

Could S0 Type II-OLR survive in the field but not the cluster environment?

Comparing *disc structure* [scalelength *h*; break strength *T* (log10 *h*_{out} / *h*_{in})] in the field and cluster environments.

So does environment influence the structure of galactic discs?

Does environment influence Fthe structure of galactic discs?

In **STAGES**, we find:

- **No evidence** to suggest that the structure of galactic discs:
 - frequency of profile type,
 - scalelength or break strength;

is dependent on the environment for either spirals or S0s.

Suggests:

- *i.* Galaxy environment has **little direct effect** on the structure of a galaxy's stellar distribution over the environments probed by **STAGES**
- *ii. Environmental processes that directly affect the structure of the stellar distribution are not driving the observed morphology—density relation*

→ more subtle (gas) processes likely to play an important role.

Disc structure in spirals/S0s

The disc structure of *spiral* and *S0* galaxies exhibit some *key differences*:

The absence of Type II S0s

Whatever mechanism transforms spirals → S0s seems to erase stellar disc truncations

- A possible explanation:
 - 'Classical' truncations (Type II-CT)
 - → break related to a radial change in *age* of stellar population (*Bakos 2008; Roediger 2012*)
 - When star formation ceases, stars in the break region would eventually *fade*
 - → break *weakens* and maybe even *disappears!*

- Comparing *disc structure* between anti-truncated (\scillageright; *type III*) spirals and S0s:
 - anti-truncations weaker in S0s than in spirals

- A possible explanation:
 - Formation probably due to an interaction (e.g. minor merger; *Younger et al. 2007*)
 - Stellar migrations could weaken break as Spirals \rightarrow S0s
- Complication: are some cases actually related to an extended bulge?

Anti-truncated µ(r) profiles Bulge or disc related?

- Probably relate to an interaction event (e.g. *minor merger*) displacing stars into an *extended outer disc* → Type III-d
- However, could equally be associated with an *extended spheroidal* (bulge) component (*initially proposed by Erwin et al. 2005*) → Type III-s

Anti-truncated µ(r) profiles Bulge or disc related?

- STAGES Type III galaxies 🔨
 - use *bulge-disc decomposition* to determine contribution of bulge light to outer profile (*r* > *r*_{brk})

- A clear dependence on morphology
- **Conclusion:** extended bulge light is far more prevalent in S0s than in spirals
 - suggests an evolving bulge-disc ratio and/or fading stellar disc as spirals transform into S0s

Morphology		Type III-d	Type III-s
5	Spiral	~85%	~15%
	S0	~50%	~50%

Conclusions

- **STAGES:** 'The structure of galactic discs with environment'
 - i. Environment seems to have little direct effect on the structure of galactic discs
 - suggests 'strong' environmental processes are not driving the observed morphology—density relation.
 - ➡ more subtle (gas) processes likely to play an important role.
 - ii. Truncated discs (, type II) are common in spirals but very rare in S0s.
 - the termination of star-formation may erase any type II feature as spirals evolve into S0s.
 - iii. In spirals, anti-truncated light profiles (\scrimes; type III) are primarily a disc phenomenon; but may be frequently caused by bulge light in S0s
 - suggests an evolving bulge-disc ratio and maybe a fading stellar disc as spirals transform into S0s

For further details see **Maltby et al. (2012a,b, 2015)** [MNRAS 402, 282; MNRAS 419, 669; MNRAS 447, 1506]