Recent Talks

List of all the talks in the archive, sorted by date.


iHwk3aA7gdU-thumbnail
Tuesday May 28, 2013
Dr. Enrique Pérez Montero

IAA

Abstract

 Chemical abundances derived using emission-line spectra in ionized gaseous nebulae are between the most useful properties that can be derived to understand the evolution of galaxies from the local Universe up to very high redshifts. Since nitrogen is one of the most abundant metals in the gas-phase of galaxies and its emission-lines can be measured many times instead of those emitted by oxygen, it is important to be aware of the implications of the variations in the nitrogen-to-oxygen ratio for the derivation of total metallicity and what are the advantages of using this abundance ratio to derive other evolutionary properties in different emission-line objects. We will also see the utility of some observational techniques, such integral field spectroscopy, to disentangle between different processes implied in the excess of observed nitrogen as derived from integrated observations.


BavgQpvGfmI-thumbnail
Friday May 24, 2013
Prof. Charles Telesco
University of Florida

Abstract

CanariCam is the GTC multi-mode mid-IR camera developed by the University of Florida. CanariCam commissioning began in earnest in
 mid-2012, and is still in progress. However, during that time it was also possible to begin science observations. After commenting on
 the current status of CanariCam, I will present some highlights of these early science observations, with an emphasis on those of protoplanetary disks. These data are still being analyzed and interpreted, so my comments will be preliminary. However, they demonstrate that CanariCam is an outstanding instrument that can provide valuable insight into a variety of astrophysical processes. CanariCam's polarimetric mode is particularly unique, and I will show intriguing science results that may indicate the magnetic-field distribution
in a YSO outflow and in massive disks and their environments. I am presenting these results on behalf of the CanariCam Science Team, many of whom have contributed significantly to the early progress with CanariCam.


cHjb0hS9aWE-thumbnail
Thursday May 23, 2013
Dr. Adriana De Lorenzo-Cáceres Rodríguez
University of St Andrews

Abstract

The general picture of galaxy formation and evolution includes bars as the main drivers of the internal secular processes affecting the lifetime of disc galaxies. Bars are present in a very high fraction of all the spiral galaxies found at different redshifts, and the processes inducing their formation or the effects they may have on their host galaxies are still under discussion. Particularly interesting is the case of double-barred galaxies: at least 20% of all spirals have turned out to host not only one but two bars embedded in them. These two bars appear randomly oriented and independently rotating. The formation of such a double-barred system has been the goal of several numerical simulations and the results obtained so far can be roughly divided in two big groups: gas-rich and gas-free formation scenarios. In the same way a single bar does, double-bar systems might also promote gas inflow and contribute to the internal secular evolution. Moreover, they have also been proposed as a very efficient mechanism for the feeding of the active galactic nuclei.

All the previous theoretical hypothesis on the formation and evolution of double-barred galaxies have not been tested due to the lack of observational works focused on these systems. With this motivation, during my PhD I observed a sample of double-barred galaxies in order to fully analyse their kinematics and stellar populations. Among the most interesting results, it is important to highlight the discovery of the sigma-hollows, which are the only known kinematical signature of the presence of inner bars, or the fact that inner bars are younger and more metal-rich than their surrounding regions. In this talk I will present the whole work and discuss the results in the framework of the different formation scenarios and the role that these inner bars may be playing in the evolution of their host galaxies.


2AxG8QyPY5M-thumbnail
Tuesday May 21, 2013
Dr. Jorge Martín Gutiérrez, Miss Mª Belén San Nicolás
ULL

Abstract

En esta charla se abordarán herramientas de interés para el desarrollo de actividades en línea con equipos de trabajo ubicados es espacios geográficos diferentes. Se darán a conocer herramientas de utilidad para el trabajo en la nube, especialmente en aquellos casos en los que tenemos que contactar con personas ubicadas en espacios geográficos distintos.


o29bnO4ykPE-thumbnail
Thursday May 16, 2013
Dr. Yakiv Pavlenko
Main Astronomical Observatory of the National Academy of Sciences of Ukraine

Abstract

We discuss the role and significance of molecules in the modern astrophysics. Molecular opacities govern the structure of model atmospheres of late-type stars and ultracool dwarfs. Some problems of computations of model atmosphere and synthetical spectra of cool stars are discussed. We present some successful attempts of the application of the molecular spectroscpy for the studies of late -type stars and ultracool dwarfs. Finally, some problems of fitting theoretical spectra to the observed SED are discussed.


A2pNMza_QIs-thumbnail
Tuesday May 14, 2013
Dr. Manuel Linares
IAC

Abstract

Neutron stars in low-mass X-ray binaries (NS-LMXBs) are unique laboratories of accretion physics, strong gravity and ultra-dense matter. I will give an overview of what we have learned in recent years by studying accretion flows and thermonuclear bursts in these systems.

I will first present and discuss the main result of a systematic study of their different accretion states: the discovery of a correlation between luminosity and spectral hardness. I will also show ongoing work on the connection between active (1-100% of the Eddington luminosity) and quiescent (down to 10^-6 times Eddington) phases of NS-LMXBs.

In the second part I will focus on the relation between mass accretion rate and the recurrence time of thermonuclear bursts (explosive nuclear burning on the neutron star surface), presenting results at the lowest and highest mass accretion rates. In particular, I will argue that rotation plays a larger role than we thought in setting the nuclear burning regimes on an accreting neutron star.


-thumbnail
Thursday May 9, 2013
Dr. Inmaculada Martínez Valpuesta
Max-Planck-Institute for Extraterrestrial Physics

Abstract

Among the different effects of secular evolution of galaxies we find how bars influence enormously their host galaxies. For many years now, it is known how the evolution of bars will produce different boxy/peanut and X-shape bulges. In this context our Milky Way is an example of a boxy bulge, and we will present a self consistent N-body simulation of a barred galaxy that will be compared with some of the Milky Way available data. We will compare the model in terms of morphology and structure, kinematics and finally metallicity gradients.


oHdoDDqk_L8-thumbnail
Thursday May 2, 2013
Prof. Rafael Rebolo, Dr. Ricardo Genova-Santos, Dr. José Alberto Rubiño-Martin
IAC

Abstract

1) Overview on Planck and QUIJOTE. R. Rebolo 15 min. 2) The Galaxy as seen by Planck. R. Génova-Santos 15 min. 3) Planck Cosmological Results. J. A. Rubiño-Martín 20 min (times approximate). We will give an overview of two Cosmic Microwave Experiments with a significant involvement of the IAC. The ESA mission Planck has recently released its first set of Cosmological Results. QUIJOTE is a CMB polarization experiment which has recently started scientific operation at Teide Observatory. We will show the first results and the potential of QUIJOTE and we will provide an overview of the Planck mission and its impact on Galactic science and on Cosmology.


mom6wpW9j68-thumbnail
Tuesday April 30, 2013
Dr. Javier Rodríguez Zaurín
IAC

Abstract

Although there is increasing speculation that the evolution of galaxy bulges may be regulated by AGN-induced outflows associated with the growth of the central supermassive black holes, the importance of AGN-induced outflows relative to those driven by starbursts has yet to be established observationally. In this context we have recently presented a study focusing on AGN-induced outflows in a sample of local Seyftert-ULIRGs. Perhaps, our most interesting result is related to the energy that the AGN returns to the galaxy in the form of feedback. We find that the typical mass outflows rates and kinetic powers of the emission line outflows are, in general, less energetically significant than the neutral and molecular outflows in ULIRGs and moreover, than those required today in the majority of the current hydrodynamic simulations that include AGN feedback. However, the uncertainties in the existing measurements are large, and more accurate estimates of the radii, densities and reddening of the outflows are required to put these results on a firmer footing. In this context, we are using HST /ACS+STIS and VLT-Xhsooter observations to accurately estimate sizes, electron densities and reddening to eventually provide the most accurate estimates of the kinetic powers associated with the ionized gas. In this talk I will describe in detail the results of this study focussing on testing the current simulations of hierarchical galaxy evolution.


9yCVLWvroHg-thumbnail
Thursday April 25, 2013
Dr. Ismael Pérez Fournón
IAC

Abstract

How do the first galaxies form and evolve? Optical and near-infrared deep surveys are now finding galaxies at very high redshifts. However, they are typically small, not massive and present some but not very high star formation. But now the Herschel Multi-tiered Extragalactic Survey (HerMES), the largest project that has being carried out with the Herschel Space Observatory, in collaboration with other groups, has discovered a massive, maximum-starburst galaxy at a redshift of 6.34. The presence of galaxies like HFLS3 in the early Universe challenges current theories of galaxy fomation and evolution. I will describe the method we have developed to find these galaxies, the follow-up observations with different facilities and the main physical properties of this extreme object.



Upcoming talks

  • UNDARK kick off
    Thursday October 10, 2024 - 9:15 GMT+1  (Aula)
  • TBD
    Dr. Nikki Arendse
    Thursday October 17, 2024 - 10:30 GMT+1  (Aula)

More upcoming talks

Recent Colloquia


Recent Talks