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ABSTRACT
We examine the effects that the modelling of a Boxy/Peanut (B/P) bulge will have on the
estimates of the stellar gravitational potential, forces, orbital structure and bar strength of
barred galaxies. We present a method for obtaining the potential of disc galaxies from surface
density images, assuming a vertical density distribution (height function), which is let to
vary with position, thus enabling it to represent the geometry of a B/P. We construct a B/P
height function after the results from a high-resolution, N-body+SPH simulation of an isolated
galaxy and compare the resulting dynamical model to those obtained with the commonly used,
position-independent ‘flat’ height functions. We show that methods that do not allow for a
B/P can induce errors in the forces in the bar region of up to 40 per cent and demonstrate that
this has a significant impact on the orbital structure of the model, which in turn determines
its kinematics and morphology. Furthermore, we show that the bar strength is reduced in the
presence of a B/P. We conclude that neglecting the vertical extent of a B/P can introduce
considerable errors in the dynamical modelling. We also examine the errors introduced in the
model due to uncertainties in the parameters of the B/P and show that even for generous but
realistic values of the uncertainties, the error will be noticeably less than that of not modelling
a B/P bulge at all.
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1 IN T RO D U C T I O N

Many edge-on disc galaxies can be seen to contain boxy-, peanut-
or X-shaped isophotes, which are usually grouped together into
the category of Boxy/Peanut (hereafter B/P) bulges. As a result of
a number of theoretical studies (see Athanassoula 2008b, 2015
for general reviews of this subject), including orbital structure
and stability analysis (Binney 1981; Pfenniger 1984, 1985; Patsis,
Skokos & Athanassoula 2002; Skokos, Patsis & Athanassoula
2002a,b; Martinez-Valpuesta, Shlosman & Heller 2006; Harsoula
& Kalapotharakos 2009; Contopoulos & Harsoula 2013), and nu-
merical simulations (Combes & Sanders 1981; Combes et al. 1990;
Raha et al. 1991; Mihos et al. 1995; Athanassoula & Misiriotis
2002; Athanassoula 2003, 2005; Bureau & Athanassoula 2005;
Martinez-Valpuesta et al. 2006), these structures are now known to
be due to vertical instabilities in the bar, which cause it to ‘puff up’,
giving rise to boxy or peanut-like shapes. These studies also show
that once a bar forms, a B/P bulge will form soon after.

Observational studies have further confirmed the link between
B/P bulges and bars (see Kormendy & Kennicutt 2004 and
Kormendy 2015 for reviews on the subject), by showing that the
fraction of edge-on disc galaxies with B/P bulges is comparable
to the fraction of disc galaxies containing bars (Lütticke, Dettmar
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& Pohlen 2000). Kinematic studies of edge-on barred galaxies and
B/P bulges also confirm the connection between the two structures
(Athanassoula & Bureau 1999; Bureau & Athanassoula 1999, 2005;
Chung & Bureau 2004, and references therein). Therefore, barred
galaxies at present and past epochs will contain B/P bulges, and in
fact, one is also believed to be present in our own Galaxy (Weiland
et al. 1994; Howard et al. 2009; McWilliam & Zoccali 2010; Shen
et al. 2010; Ness et al. 2012, Ness et al. 2013a,b; Nataf et al. 2013,
2015; Vásquez et al. 2013; Wegg & Gerhard 2013; Gardner et al.
2014; Nataf, Cassisi & Athanassoula 2014).

Bars are found in about two thirds of disc galaxies in the local
Universe, with variable strengths (Eskridge et al. 2000; Menéndez-
Delmestre et al. 2007; Barazza, Jogee & Marinova 2008; Aguerri,
Méndez-Abreu & Corsini 2009; Gadotti 2009), and are known to
be the main drivers of the secular phase of galaxy evolution. The
torque they induce into the disc causes outward angular momen-
tum transfer, which in turn will cause a redistribution of matter in
the disc. They are thus responsible for driving gas to the centre
of their host galaxy (Athanassoula 1992b), forming discy pseudo-
bulges (Kormendy & Kennicutt 2004; Athanassoula 2005), redis-
tributing stars in the galactic disc (Sellwood & Binney 2002; Roškar
et al. 2008; Minchev & Famaey 2010), and possibly creating a fuel
reservoir for AGN activity (Shlosman, Begelman & Frank 1990;
Coelho & Gadotti 2011; Emsellem et al. 2015, but see also Lee
et al. 2012, for a review see Combes 2001). However, even though
the effect of bars on all these processes has been thoroughly
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examined, a study of the effects of B/P bulges on all these pro-
cesses has not, until present, been carried out.

As a first step towards understanding the effect B/P bulge geom-
etry may have on the aforementioned processes, in this paper we
focus on their influence on dynamical models of their host galaxies.
These models are obtained directly from images of the galaxies’
surface brightness, by first assuming a vertical density distribution,
or height function, and subsequently deriving the potential of the
galaxy. They have been used extensively in the literature, with one
of their most important implementations being in simulations that
study the response of gas in a fixed potential. These response simu-
lations are used to study the dark matter content of galaxies and to
test the maximum disc hypothesis (Kranz, Slyz & Rix 2001, 2003;
Weiner, Sellwood & Williams 2001; Slyz, Kranz & Rix 2003; Pérez,
Fux & Freeman 2004), the bar pattern speed (Lindblad, Lindblad
& Athanassoula 1996; Kalapotharakos, Patsis & Grosbøl 2010b)
as well as the kinematical and morphological properties of gas in
galaxies (Lin et al. 2011, 2013). Dynamical models have also been
used in studies determining the bar strength (Buta & Block 2001;
Laurikainen & Salo 2002) and the orbital structure of galax-
ies (Quillen, Frogel & Gonzalez 1994; Patsis, Athanassoula &
Quillen 1997; Kalapotharakos, Patsis & Grosbøl 2010a; Patsis,
Kalapotharakos & Grosbøl 2010). Furthermore, they have been
used to study gravitational torques in barred and spiral galaxies in
order to establish the amount of gas inflow and by extension de-
termine the importance of secular evolution (Zaritsky & Lo 1986;
Haan et al. 2009; Foyle, Rix & Zibetti 2010). In all of these afore-
mentioned studies, the geometry of the B/P bulge is not taken into
account when constructing the height function, and instead a posi-
tion independent, ‘flat’ height function is assumed. This is partly
due to the lack of an analytical model for a B/P bulge, as well as to
the inherent difficulty of detecting these bulges in face-on or inter-
mediate inclination galaxies, which are the galaxies generally used
in these studies.

Various methods, however, have been proposed over the past few
years, which allow either for the detection of B/P bulges, or at
least for an educated guess at their existence. By viewing a large
number of N-body+SPH simulations, and covering a wide range
of viewing angles, Athanassoula et al. (2014) have shown that B/P
bulges manifest themselves in face-on projections as the so-called
barlens (Laurikainen et al. 2011), which renders their detection
fairly easy. Strong observational arguments for this have been pre-
sented in Laurikainen et al. (2014). Another method proposed by
Debattista et al. (2005), uses signatures in the stellar kinematics
of face-on or almost face-on galaxies and was implemented by
Méndez-Abreu et al. (2008) who confirmed the existence of a B/P
bulge in NGC 98. Furthermore, it is possible to detect signatures
of B/P bulges by examining the morphological features of inclined
galaxies (Athanassoula & Beaton 2006; Erwin & Debattista 2013).

We therefore believe that a study of the effect of B/P bulges on
models of their host galaxies, and by extension of the necessity of
including the geometry of B/P bulges in the height function of these
models, is called for. To this aim, we first introduce in Section 2
a straightforward and reliable method for calculating the potential,
forces and derivatives of forces of a general density distribution
ρ(r,φ,z). We present some tests which demonstrate that the method
can give highly accurate results, while also allowing the flexibility
to choose an arbitrary height function, without being restricted to
one which is constant with position.

We then used our code on an image of an N-body+SPH simulated
galaxy, which is presented in Section 2.3, thus obtaining a realistic
potential for a barred galaxy. In order to create this model, we

assign a thickness and a height function to the galaxy. These height
functions are introduced in Section 3 and include two ‘flat’ height
functions, a function which describes peanut bulges (from which
we construct our fiducial B/P model), and another which describes
boxy bulges.

The main results are presented in Section 4, where we examine
the effect B/P bulges have on the potential and forces (4.1), on the
periodic orbits (4.2) and on the bar strength (4.3). We find that B/P
bulges indeed have a significant effect on the results and therefore
conclude that they should be included when modelling their host
galaxy.

In Section 5, we explore the errors which will be induced in the
results by using a B/P model which is not exactly the ‘correct’ one.
This is necessary since it is not trivial to observationally obtain the
exact parameters of B/P bulges, and this can introduce errors in the
model. We show that for a range of uncertainties, the errors induced
in the results are less than those induced by not modelling the B/P at
all. We also introduce a new method for calculating the bar strength,
Qint

T , which takes into account the variation of the non-axisymmetric
forcings along the whole extent of the bar.

In Section 6, we give a summary and list the main conclusions of
our work.

2 M E T H O D A N D T E S T S

To create a dynamical model of a galaxy, we first need its density
distribution. The two-dimensional surface density can be obtained
from surface brightness images of a face-on disc galaxy by assuming
an M/L ratio (see for example Querejeta et al. 2014). It is important
that these images are taken in a wavelength range which minimizes
the effect of dust extinction and traces the old stellar population (for
example, the Spitzer 3.6 μm band). In this work, we use an image
of a face-on simulated galaxy, and thus we do not need to account
for dust extinction, nor assign an M/L ratio, as our two-dimensional
image gives the surface density directly. Once we have the surface
density, we also need to assign a height function, and together these
give us the three-dimensional density distribution, from which we
can calculate the potential of the galaxy due to the stellar component.
Our method for calculating the potential involves a straightforward
three-dimensional integration over the density distribution and we
refer to it throughout the paper as the 3DF method. We calculate
the potential in Cartesian coordinates by

�(x, y, z)

= −G

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

ρ(x ′, y ′, z′)√∑3
j=1(x ′

j − xj )2 + ε2
dx ′dy ′dz′, (1)

where G is Newton’s gravitational constant, ρ is the density and ε is
the softening length which is necessary to eliminate the noise at the
expense of a small bias (Merritt 1996; Athanassoula et al. 2000).
We can differentiate the expression in equation (1) analytically
with respect to x, y and z, to obtain expressions for the force and
its derivatives. We thus rely heavily on an adequate integration
algorithm, specifically one which can deal with singularities. To
tackle this we use CQUAD, a doubly adaptive integration algorithm
(Galassi et al. 2003), which requires more function evaluations
than other integration routines, but is more successful in dealing
with difficult integrands. It computes the integral within the desired
relative error limits (or precision), which the user can set. Since we
mainly work in the z=0 plane, we focus in what follows on the non-
zero quantities in the plane: the potential � and the two non-zero
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Effects of B/P bulges on galaxy models 231

components of the force Fx and Fy. As mentioned, the above, as
well as what follows, concerns the potential and forces of the stellar
component of the galaxy.

2.1 Tests on the method: relative errors

In order to test the accuracy of our method, we create a model of a
barred galaxy containing a disc, a bar and a classical bulge, using
density distributions which have analytic solutions for the potential
and forces. We then calculate the potential and forces for this model
using the 3DF method, and compare the results against the analytic
solutions. The general results of these tests are very positive, which
demonstrates the ability of our code to deal with difficulties such
as cuspy and/or non-axisymmetic density configurations. For more
details on the model of the galaxy, we refer the reader to Appendix A.

To calculate the relative errors of the potential and the derivatives
of the force, we use the relation

Error = 0.5
|R1 − R2|
|R1| + |R2| , (2)

where R1 and R2 are, respectively, the analytic and 3DF solutions.
To calculate the relative errors for the force, we use the relation

Error = |Fi1 − Fi2|√
F 2

i1 + F 2
j1

, (3)

where i and j can be either the x or the y component of the force,
and the subscripts 1 and 2 stand for the analytic and 3DF solutions,
respectively. We therefore normalize the error of each component
of the force by the total force at each point. This is done because
our main interest in the forces is for the calculation of orbits and
because on the symmetry axes of the x and y components of the
force (in the static frame of reference), the analytic estimates of Fx

and Fy will be equal to zero.
We stress that the precision with which the code calculates the

results is an input parameter to the code. The accuracy can be as
high as the user wants it to be (within the limits of machine preci-
sion), at the expense, of course, of computation time. We require
a three dimensional integration and, due to the propagation of er-
ror at each integration, the relative precision we ask of the CQUAD

algorithm for each integration has to be larger than that which we
wish to achieve. Practically this means that if we ask for a relative
precision of 10−3, we will obtain a relative precision of approx-
imately 10−1. This is sufficient for our purposes as the error is
less than 1 per cent for all variables. The softening is set to 10 pc
throughout the paper. For this precision and softening, the maximum
error of the potential is 0.3 per cent, of Fx 0.6 per cent and of Fy

0.7 per cent.

2.2 Tests on the method: orbits

Even though from the results of the relative errors we see that the
3DF method gives highly accurate results, we would like to confirm
that the noise in the force field does not prevent orbits from running
smoothly, as they would in an analytic potential. To do this, we
calculate a number of periodic orbits in the analytic potential and
in the potential derived using the 3DF method for the galaxy in the
frame corotating with the bar, in the model described in Appendix
A. The grid used for the orbits and throughout the paper is 200 ×
200, and the orbits are calculated using a Kick-Drift-Kick leapfrog
algorithm (Hockney & Eastwood 1988; Quinn et al. 1997; Springel
2005).

Figure 1. Comparison of orbits in the analytic and 3DF potentials of our
model galaxy. The thin black line gives the outline of the bar. The orbits
calculated in the 3DF potential are given in solid thick black lines, and the
orbits calculated in the analytic potential are given in dashed red lines. We
plot some x1 orbits (along the bar), some x2 orbits (perpendicular to the bar),
and an almost circular orbit outside the bar region. We see that the orbits in
the two potentials almost completely overlap, so that the red and black lines
are practically indistinguishable.

In Fig. 1, we plot a few of these orbits. In this figure and all
throughout the paper the bar major axis is along the x-axis. In the
figure, we show some x1 orbits, which are elongated along the bar,
some x2 orbits which are perpendicular to the bar, as well as some
nearly circular orbits outside the bar region. We see that the orbits
calculated in the 3DF potential are a very good approximation of
those calculated in the analytic potential, as the two practically
coincide. Thus the error which is introduced in the potential from
our 3DF method and the adopted value of precision is sufficient for
our purposes.

2.3 The image

We use the 3DF method on the density distribution derived from a
face-on image of a simulated isolated galaxy and different height
functions (which are described in Section 3). The initial conditions
of the simulation from which the image was constructed, include a
live spherical dark matter halo, an exponential stellar disc and 75
per cent gas (for more information on the simulation the reader is
referred to run gtr116 in Athanassoula, Machado & Rodionov 2013).
The snapshot we use is taken well into the secular evolution phase
of the galaxy, specifically at 8 Gyr after the start of the simulation,
by which point a strong bar and B/P bulge have formed. The image
we use is constructed from the ‘stars’ component of the snapshot
and has a morphology reminiscent of that of many strongly barred
galaxies, such as IC 4290 (see Fig. 2).

In order to decrease the noise of the image, we require a snap-
shot with a large number of particles. We create a snapshot with
40 times the particles of the original snapshot, following the proce-
dure described in Athanassoula (2005). To further reduce the noise
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232 F. Fragkoudi et al.

Figure 2. Visual comparison between IC 4290 and gtr116. The two galaxies
have striking morphological similarities and are classified as having the same
bar strength (for more details see Section 4.3).

in the image we apply some smoothing, by Fourier decomposing
and recomposing it.

The Fourier components are calculated as follows.

an(r) = 1

π

∫ π

−π

�(r, θ )cos(nθ ) dθ, (4)

bn(r) = 1

π

∫ π

−π

�(r, θ )sin(nθ ) dθ, (5)

where an and bn are the even and odd Fourier components, θ is the
azimuthal angle, r the radius and � gives the surface density. We
then reduce the high frequency noise by recomposing the image as

�(r, θ ) = a0

2
+

m=nF∑
m=2

(am(r)cos(mθ ) + bm(r)sin(mθ )) , (6)

using only a limited number of even Fourier components (in our
case nF = 26). We show in Figs 3(a) and (b) the surface density of the
original image and of the Fourier recomposed image, respectively,
both in arbitrary units, and in Fig. 3(c) we show the residual image
of the two. As the images of surface density are in arbitrary units,
the density, as well as the potential and its derivatives will also be
in arbitrary units in what follows.

3 H E I G H T F U N C T I O N S U S E D

In order to obtain the three-dimensional density of a galaxy disc
from a two-dimensional image, we need to assume a height function,
which defines how the density drops off as a function of z from the

equatorial plane z = 0. The height function and the scaleheight (z0)
will of course affect the results, and we therefore need to use the
height function which best approximates that of the galaxy we are
trying to model.

The height function can be either constant or can change with
position. In the case where it is constant with respect to position we
assume, for simplicity, that the density distribution can be written
as

ρ(x, y, z) = �(x, y)F (z), (7)

where ρ is the three-dimensional density distribution, � is the two-
dimensional surface density, and F is the height function. In the
more general case, where the height function depends on position
in the galaxy, as would be for example the height function describing
a B/P bulge, the scaleheight changes as a function of position. In
this case, the density distribution would be given by

ρ(x, y, z) = �(x, y)F (x, y, z), (8)

where the normalization of the height function is∫ ∞

−∞
F (x, y, z)dz = 1. (9)

It is worth noting that the mass of the model is always the same; the
height function simply determines the volume density of the galaxy,
by setting the thickness of the disc.

3.1 Flat height functions

Up to now in the literature, position-independent or ‘flat’ height
functions have been used when modelling barred disc galaxies. We
therefore also use two flat height functions in this paper, to check
the discrepancy which will be created in the model by (a) using a flat
height function and a B/P height function, and (b) using two different
flat height functions. We adopt two commonly used functions, the
isothermal-sheet model (van der Kruit & Searle 1981):

F (z) = 1

2z0
sech2

(
z

z0

)
, (10)

and the sech-law model (van der Kruit 1988):

F (z) = 1

πz0
sech

(
z

z0

)
, (11)

where 1/(2z0) and 1/(πz0) are the respective normalization factors.

Figure 3. Left: original image showing the surface density of the stellar component of the gtr116 simulation. Middle: model from the Fourier recomposition,
using up to nF = 26 even Fourier components. Right: residual image after subtracting the model from the original image.
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Effects of B/P bulges on galaxy models 233

Figure 4. Left: side-on image of the surface stellar density of the simulated galaxy gtr116. Middle: the scaleheight of the simulation (red crosses) is plotted
along the x-axis (for y = 0, i.e. the side-on projection). The solid black line shows the fit of z0(x, 0) to the data, which gives the scaleheight of the fiducial
peanut height function. Right: plot of the scaleheight of the simulation (red crosses) along x = 3 which is where the maximum of the peanut occurs (end-on
projection). The solid black line shows the values of z0(x, y) along x = 3.

3.2 Peanut height function

To obtain a height function for the peanut, we examined the parti-
cle distribution along different cuts in x and y from the simulation
introduced in the previous section. We found that the sum of two
two-dimensional Gaussians for the scaleheight can provide a rea-
sonable approximation to the B/P shape. As can be seen in Fig. 4
and as commented below, this choice may fail at certain points, but
provides an overall fair representation of the structure.

The resulting B/P height function is a non-separable function of
position and is given by

F (x, y, z) = 1

2z0(x, y)
sech2

(
z

z0(x, y)

)
. (12)

The scaleheight z0(x, y) varies like the sum of two two-dimensional
Gaussians:

z0(x, y) = A exp

(
−

(
(x − x0)2

2σ 2
+ (y − y0)2

2σ 2

))

+ A exp

(
−

(
(x − x1)2

2σ 2
+ (y − y1)2

2σ 2

))
+ zdisc

0 , (13)

where A is the maximum scaleheight of the peanut above the disc
scaleheight, zdisc

0 . The variance of the Gaussians is given by σ 2, (x0,
y0) is the position of the maximum of the first Gaussian and (x1,
y1) the position of the maximum of the second Gaussian. We fit
these two two-dimensional Gaussians to values of the scaleheight
obtained from the simulation along y = 0 and x = 3 (which is where
the maximum of the scaleheight occurs). In the remainder of the
paper, we refer to this as our fiducial peanut (or B/P) model.

To obtain the scaleheights, we take cuts along the x- and y-axes
and fit the vertical particle distribution with a sech2 function. We
thereby determine the variation of z0 from bin to bin along the cut.
The results can be seen in Fig. 4. In the side-on view (panel b), we
see that the scaleheight along y = 0 behaves approximately like the
combination of two Gaussians, except in the central region where
the scaleheight drops below that of the outer disc. For a cut along
x = 3, where the peanut is maximum (end-on view, panel c), the
behaviour of z0 is still well approximated by a Gaussian, although
our fit slightly under predicts the value of the scaleheight.

Along some cuts at x values intermediate between the centre and
the peanut maximum, the Gaussian approximation fails to represent
the behaviour of the scaleheight with y. In fact the behaviour of the
scaleheight in the presence of a B/P bulge is quite complex, and
cannot be grasped entirely by a simple analytic function. However,

as it turns out, the fitted function shown in Fig. 4 underestimates the
value of z0 at these points. This directly translates into an underesti-
mation of the effect of the peanut in those regions. In summary, our
fiducial model for the peanut height function shown in Fig. 4 will
result into a conservative estimate of the effect of the real peanut
present in the image we adopt as our starting point. Given the scope
of this paper, which is to demonstrate the generic effect of a peanut
bulge on a galaxy model, we find this approximation more than
satisfactory.

3.3 Boxy height function

The B/P bulge might at times have rather boxy isophotes. This could
be due to projection effects, whereby the peanut is projected at such
an angle that the isophotes appear boxy (Athanassoula & Misiriotis
2002). However, boxy isophotes might be present even when the
bar is seen side-on, i.e. they might be the real shape of the B/P bulge
(see Patsis et al. 2002 for a discussion based on orbits). This tends
to be the case for galaxies with weak bars, where instead of a strong
x-shape or peanut forming, boxy isophotes are seen (Athanassoula
2008a).

To model a boxy bulge, we use a height function which drops off
as sech2 with height from the z = 0 plane,

F (x, y, z) = 1

2z0(x, y)
sech2

(
z

z0(x, y)

)
, (14)

where the scaleheight is a top-hat function,

z0(x, y) =
⎧⎨
⎩

z
bulge
0 |x| ≤ xmax & |y| ≤ ymax

zdisc
0 otherwise.

, (15)

and where zdisc
0 gives the scaleheight of the disc and z

bulge
0 gives the

scaleheight, or strength, of the boxy bulge. This is quite a simplified
model of the boxy bulge, with only two free parameters, its strength
and length (which is set by L = 2xmax). The thickness of the box,
i.e. ymax, is set by the width of the bar.

We create the fiducial boxy height function such that it best
approximates the fiducial peanut height function, so such that we
can examine whether the former can be used as an approximation
for the latter, as there is one less parameter to model. The fiducial
boxy height function therefore has a height equal to the height of
the fiducial peanut model and its length is such that the boxy bulge
finishes approximately where the peanut scaleheight is in between
its maximum and minimum (see top-right panel of Fig. 5).
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234 F. Fragkoudi et al.

Figure 5. Errors from not taking into account the proper B/P geometry: the top row gives the scaleheight (in red and black lines) along the bar major axis
for the setups we are comparing in the plots. The second, third and fourth rows give the relative difference between the two setups being compared for the
potential, Fx and Fy, respectively (see the colourbar for values of the relative difference). The dark green line represents the ellipse fitted to the outer isophote of
the bar. First column: difference between the sech and sech2 setup. Second column: difference between the fiducial peanut height function and a sech2 height
function. Third column: difference between a boxy height function and a sech2 height function. Fourth column: difference between a boxy height function and
our fiducial peanut height function. We see that not including a peanut or a boxy bulge where there is one will induce large errors in the potential and forces
and also that a boxy height function is not a good approximation for a peanut height function. For details see the text (Section 4.1).
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Effects of B/P bulges on galaxy models 235

4 B OX Y / P E A N U T O R N O B OX Y / P E A N U T ?

We wish to investigate whether accounting for the geometry of the
B/P in the height function will significantly change the model of
its host galaxy, and therefore whether we should include it in the
modelling when it is present. Thus, in the next three subsections
we investigate the effect B/Ps will have on the potential and forces
(Section 4.1), on the periodic orbits (Section 4.2) and on the bar
strength (Section 4.3) of the model.

4.1 B/P effect on potential and forces

We calculate the potential and the forces for the density distribution
given by the image described in Section 2.3, and the different height
functions described in Section 3. The results of this subsection are
shown in Fig. 5. In the top row, we plot the scaleheight along the
bar major axis for the two setups we are comparing in the plots.
We show two-dimensional plots of the relative difference for the
potential in the second row, of the x component of the force in the
third row, and of the y component of the force in the fourth row.
The green line represents an ellipse fitted to the outer isophote of
the bar. Each column gives one of the following comparisons (from
left to right).

(i) Two flat height functions: sech and sech2

We compare the models obtained by implementing two flat height
functions, sech and sech2, with equivalent scaleheights, in order to
demonstrate that different flat height functions do not significantly
affect the results. In the very centre, the difference for the potential is
only around 1 per cent and for the forces it is 5 per cent, while for the
rest of the grid the difference between the two setups is well below
1 per cent in all cases. If we decrease the value of the scaleheight
the two height functions produce even more similar results. This
happens because as the disc tends to become infinitesimally thin, the
shape of the height function becomes less important. Equivalently,
if we increase the value of the scaleheight, and hence the thickness
of the disc, then the difference in the results obtained with the two
height functions increases.
We see therefore that the scaleheight, and not the vertical profile of
the height function, is primarily responsible for creating differences
in the models.

(ii) Flat and peanut height functions
We compare a flat height function and the height function of our
fiducial peanut bulge, i.e. a peanut with parameters fitted to our
simulated galaxy. The differences that arise from using these two
setups are significant for the potential and forces, as can be seen in
the second column of Fig. 5. This is especially true near and around
the region of the maximum height of the peanut, and in general in
and around the bar. The force can be different in the two cases by up
to 40 per cent, which is not surprising since around the maximum of
the peanut the scaleheight is more than three times the value of the
scaleheight of the disc. This can be seen in the top row of the figure,
which demonstrates how the scaleheight varies along x for the two
height functions. The larger scaleheight reduces the forces in the
plane of the disc, due to a reduction of the density in the plane.
Therefore, we see that by not taking into account the geometry of
the B/P bulge, we induce significant errors in the model, i.e. in the
potential and its derivatives.

(iii) Flat and boxy height functions
In the third column of Fig. 5, we compare a flat height function and
the height function of the fiducial boxy bulge. We see that a boxy
height function will also induce large differences compared to the
flat height function, and in fact in the central regions our fiducial

boxy height function has an even larger effect than the peanut. Boxy
bulges are usually associated with weaker bars in simulations and
are therefore typically less strong than peanut bulges (although at
early times boxy bulges can be as strong as peanut bulges – see
figs 2 and 3 in Athanassoula & Misiriotis 2002). In observations,
boxy bulges can appear as strong as peanut bulges (see for example
Chung & Bureau 2004) although it is hard to distinguish whether
these are truly boxy bulges, or simply peanut bulges seen at an
angle. It is therefore reasonable to assume that a substantial amount
of boxy bulges will be somewhat less strong than our fiducial boxy
height function. However, for the sake of simplicity and to be able to
compare our fiducial boxy height function with our fiducial peanut
height function, we give the former the same strength as the latter.
Therefore, our fiducial boxy height function can be thought of as an
upper limit for the effect of a boxy bulge on the model of its galaxy.

(iv) Peanut and boxy height functions
We compare our fiducial peanut height function to our fiducial boxy
height function in order to see to what extent the boxy height func-
tion approximates the peanut height function as it has one less free
parameter than the peanut height function. These results can be seen
in the fourth column of Fig. 5. For the potential and forces the match
between the boxy height function and the peanut height function is
quite poor, especially in the central region where the scaleheights
of the two height functions are very different. Therefore, the boxy
height function is not a good approximation to a peanut bulge.

4.2 B/P effect on periodic orbits

In this section, we examine how some of the most important families
of periodic orbits will be influenced by taking into account the
geometry of a B/P. To do this we study two models: the model with
the fiducial peanut bulge height function, and the model with the
sech2 height function without a B/P bulge. We set the pattern speed
of both models to be such that corotation occurs just outside the bar
radius, within the range 1.4 > RCR/Rbar > 1, where RCR and Rbar

are the corotation and bar radius, respectively (e.g. Athanassoula
1992b). The orbits are calculated in a frame of reference corotating
with the pattern speed of the bar.

In Fig. 6(a), we show a few typical orbits in the bar region for
the potentials we are examining, overplotted on the image of our
simulated galaxy, gtr116, shown face-on. The three most important
families of orbits in the bar region are shown, i.e. the x1 (red lines,
extended along the bar major axis), x2 (cyan lines, perpendicular to
the bar major axis) and 3/1 (green lines, asymmetric with respect
to the y-axis) families, which are stable along most of their extent.

In Fig. 6(b), we plot the characteristic diagram of periodic orbits,
for the two cases with and without a peanut. The characteristic
diagram gives the value at which the orbit intersects the y-axis (y0)
as a function of its Jacobian energy (EJ, i.e. energy in the rotating
frame of reference; Binney & Tremaine 2008). The Jacobian energy
is in arbitrary units, since, as already mentioned, the mass is also
in arbitrary units. We see that the characteristic diagram of the two
models differs significantly. The most noticeable effect due to the
presence of a B/P is the change in the bifurcation loci of the upper
and lower branch of the 3/1 family. This indicates that taking into
account the geometry of a B/P in the model changes the location
of the 3:1 resonance, and therefore the 3/1 family of periodic orbits
appears at higher energies. Thus orbits of the 3/1 family will differ
in the two cases, as can be seen in Fig. 7(b), where we plot two
3/1 orbits in the two models for the same cut along the y-axis. The
extent of the 3/1 family of orbits is also significantly increased for
the case with a B/P bulge, surpassing the extent of the x1 family of
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236 F. Fragkoudi et al.

Figure 6. Left: some typical orbits in the bar region for the model with a sech2 height function, overplotted on the image of the simulated galaxy gtr116:
In red the x1 bar supporting orbits, in cyan an x2 orbit perpendicular to the bar and in green the 3/1 orbits (asymmetric with respect to the y-axis). Right:
characteristic diagram (intersection of each orbit with the y-axis as a function of the Jacobi energy) for the models created from the image of the simulated
galaxy gtr116 and the two height functions. The solid black line gives the characteristic diagram for the model with the fiducial peanut bulge and the dashed
red line the characteristic diagram for a model with a flat sech2 height function. The dotted blue line shows the zero velocity curve (ZVC) for the sech2 model
(the ZVC of the two models are very similar).

Figure 7. Left: two x1 orbits with the same Jacobian energy (EJ = −0.9) calculated in the two potentials: with (solid black line) and without (dashed red line)
a B/P bulge. We see that in the B/P model the x1 orbit’s length and height are reduced (its extent along the x-axis is reduced by ∼12 per cent and along the
y-axis by ∼46 per cent – measured, respectively, at y = 0 and x = 0). Right: two 3/1 periodic orbits for y0 = 1.2 in the two potentials (colours as before). Again
the orbits differ significantly.

periodic orbits, which is in fact shorter compared to the x1 family
in the model without a B/P bulge.

The x1 family also suffers changes, in the EJ region between −1.1
and −0.8. In this area of the diagram, the maximum extent of the
orbits along the x-axis reaches the region where the effect of the
B/P is maximum; therefore, for these energies the orbits of the two
models differ. In Fig. 7(a), we show an x1 orbit of the same energy
(EJ = −0.9) plotted in the two models. When a B/P is present, the
maximum extent of the orbit along the x-axis is reduced by 12 per

cent, while its maximum extent along the y-axis is reduced by 46
per cent (measured at x = 0).

For the x2 family, the highest (lowest) value of y0 increases (de-
creases) for the model with a B/P bulge (see Fig. 6b), i.e. the
entire extent of the x2 family is increased by about 43 per cent.
As the extent of the x2 family is related to the distance between
the two Inner Lindblad Resonances (ILRs; Athanassoula 1992a),
the distance between these two resonances will therefore also in-
crease. This increase is due to a weakening of the non-axisymmetric
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Table 1. Errors in bar strength.

Comparison 〈Error QT〉 MAX(Error QT) Qb

sech–sech2 1 per cent 1.6 per cent 1.5 per cent
peanut–no peanut 27 per cent 74 per cent 4 per cent
peanut–boxy 14 per cent 42 per cent 16 per cent

Note. We show the average and maximum of the relative errors of
QT, as well as the relative error of Qb, for three different comparisons
of the setups.

perturbation: when the geometry of B/Ps is taken into account in
the model, the scaleheight of the galaxy is increased, where the
B/P is maximum, and therefore – since the amount of mass is the
same – the volume density in the plane of the galaxy is decreased.
This leads to a decrease in the radial and tangential forces in such
a way that the non-axisymmetric perturbation is diminished, thus
changing the distance between the two ILRs. This is in accordance
with results from both Contopoulos & Grosbol (1989) and Athanas-
soula (1992a), the latter of which showed that there are a number
of model parameters which can affect this distance. In particular, in
figs 6 and 7 of Athanassoula (1992a), we see that the distance be-
tween the ILRs can increase due to a decrease in the bar mass or the
pattern speed, or due to an increase in the central mass concentration
of the galaxy or the axial ratio of the bar.

The differences between the orbital families of the two models
will have effects on their stellar, as well as their gaseous dynamics.
The extent of the x2 orbits plays a crucial role on the shape of the
shock loci in the gas (Athanassoula 1992a, 1992b), and therefore
the shape of the gas shocks in the two models should differ signif-
icantly; conversely, the shape and strength of the shocks influence
the amount of gas inflow towards the centre of the galaxy, and it
is therefore likely that there will be a measurable difference in the
amount of gas inflow in models with and without a B/P bulge. This
is further supported by the results in Section 4.3, where we show
that B/P bulges reduce the strength of the bar; we plan to address in
upcoming work the extent to which the gas flows will be affected.

4.3 B/P effect on bar strength

We study the effect of the B/P bulge on one of the measures of bar
strength, which involves calculating the non-axisymmetric forcings
on the disc due to the bar, i.e. the bar-induced torque (Combes &
Sanders 1981; Buta & Block 2001). The magnitude of this non-
axisymmetric perturbation is given by

QT (r) = F max
T (r)

〈FR(r)〉 , (16)

where FT is the tangential force FT(r) = (1/r) (∂�/∂φ), and 〈FR(r)〉
is the average over azimuth of the radial force FR(r) = ∂�/∂r .
The forces are calculated directly from the image, as described in
Section 2. In order to obtain a single measure of the bar strength for
a galaxy, the quantity Qb, which is the maximum of QT in the bar
region, is commonly defined as the bar strength. In what follows we
investigate the effect that a B/P height function will have on both
Qb and QT.

The results of this study are discussed in paragraphs (i), (ii) and
(iii), where we examine models with the flat, the fiducial peanut and
the fiducial boxy height function, respectively. In Table 1, we show
the maximum and average relative errors of QT, denoted MAX(Error
QT) and 〈Error QT〉, respectively, as well as the relative error of Qb,

when comparing two models with different height functions. The
average relative error of QT over radius is calculated according to

〈Error QT 〉 = 1

n
×

n∑
i=1

(
abs

(
QT1 (ri) − QT2 (ri)

QT1 (ri)

)
× 100

)
. (17)

Plots of these results can also be seen in Fig. 8, where it is worth
noting that for the flat and peanut height functions, the strength of
the bar is Qb ≈ 0.55–0.6. According to Buta & Block (2001), this
represents a strong bar case (between bar class 5 and 6), which corre-
sponds to approximately 20 per cent of their sample of SB galaxies.
We have already shown in Fig. 2 the striking morphological similar-
ity between IC 4290 and our galaxy, and we note here that IC 4290
is also classified by Buta & Block (2001) as a class 6 barred galaxy,
with Qb = 0.56. Therefore the results presented in this section, as
well as in previous and subsequent sections, correspond straight-
forwardly and quantitatively to strongly barred galaxies. However,
even weakly barred galaxies will have B/P bulges, albeit weaker
ones, and therefore the results will also apply to these galaxies al-
though to a lesser extent. We intend to carry out a full statistical
study of the effects of different strength B/P bulges on the models of
their host galaxy, together with a full comparison to observations,
elsewhere.

(i) A model with a sech and sech2 height function
In previous work by Laurikainen & Salo (2002), the effect of
position-independent height functions and height functions which
only vary as a function of radius was examined, and these were found
not to change Qb in a significant way. For realistic height functions
such as the exponential, sech, or sech2 models, they found that Qb

was affected by less than 5 per cent, which is consistent with our
own results. This is confirmed in Fig. 8 and Table 1, where we see
that for an equivalent scaleheight, the height functions of sech and
sech2 will produce very similar bar strengths, which will tend to
become even more similar the thinner the disc.

(ii) A model with the fiducial peanut height function
We plot QT for our fiducial B/P height function. In the region around
the scaleheight maxima (at r = 3), QT is significantly flatter than
the model without a peanut, due to the reduction of the strength
of the tangential and radial forces. The value of Qb will not be
significantly different from the case with the flat height function,
due to the fact that the maxima of the peanut and the maximum
of QT are at a relatively large distance from each other. The torque
induced by the bar in the two cases however is significantly dif-
ferent, as can be seen both in the plot and in the second row of
Table 1. By using the Qb method of measuring bar strength, the bars
will be judged as having the same strength (class 6), and hence the
same effect on the disc, even though the forces in the plane of the
galaxy are significantly reduced in the presence of a peanut. There-
fore, in Section 5.3 we introduce another measure of bar strength,
which can capture the reduction in bar strength when a B/P bulge is
present.

(iii) A model with the fiducial boxy height function
We also plot QT for our fiducial boxy height function. We see again
that where the boxy bulge is maximum, QT is flattened due to the
decrease in the strength of the bar forces in the plane. We also see
that where the top-hat boxy function ends, QT exceeds the values of
the sech and sech2 curves. This is due to the effect of the boxy bulge
on the tangential and radial forces, with the former increasing just
outside the boxy bulge while the latter is decreased in the whole
disc due to the overall decrease in mass–density in the plane of the
galaxy. The combination of these two effects results in the torque
becoming large in the region just outside the boxy bulge. As a
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238 F. Fragkoudi et al.

Figure 8. Strength of non-axisymmetric forcings (QT) as a function of radius, for models with different height functions: sech (solid red line), sech2 (dashed
green line), the fiducial peanut setup (thick black solid line) and the fiducial boxy setup (dash–dotted blue line). The vertical solid black line indicates the radius
at which the scaleheight of the fiducial peanut is maximum and the vertical dashed black line indicates the end of the bar.

consequence, Qb is overestimated by 16 per cent compared to the
fiducial peanut case (third row of Table 1). We investigate the boxy
height function as an alternative to using the peanut height function
– since there is one parameter less to model – and conclude that
even if one is merely interested in QT, a simple boxy height function
is not a good approximation to a peanut function.

5 E R RO R S D U E TO B OX Y / P E A N U T
M O D E L L I N G

In this section, we investigate how much error will be induced if
we include a B/P bulge in the model, but with the main peanut
parameters differing from that of our fiducial model. This type of
error is induced due to observational uncertainties, as it is not trivial
to observationally obtain the correct parameters for the B/P bulge
we want to model. This is due to the physics of the problem, not
the numerical part of the calculation (as is the error referred to
in Section 2.1 which can be made arbitrarily small) and is there-
fore practically an unavoidable source of uncertainty. Nevertheless,
as we will discuss below, there do exist empirical and theoreti-
cal arguments which can constrain the parameter space of a B/P
bulge.

The height function we have chosen for our fiducial B/P bulge,
the sum of two two-dimensional Gaussians, has three degrees of
freedom. Thus inaccuracies in the modelling of the B/P bulge can
also be introduced in three ways: by estimating wrongly the height
of the Gaussians (which corresponds to a change in peanut strength),
or the distance between the maxima of the Gaussians (which cor-
responds to a change in the peanut length), or the widths of the
Gaussians (which corresponds to a change in peanut ‘width’, i.e.
how peaked or thin the peanut is at its maximum).

5.1 Potential and forces

In this subsection, we investigate how much error is introduced in
the potential and forces by incorrectly modelling the B/P bulge.

5.1.1 Peanut strength uncertainties

The maximum value of the scaleheight of the peanut, also called the
peanut strength, is a value which is not trivial to find observation-
ally. Numerical studies have shown that the strength of the peanut
correlates with the bar strength (Athanassoula 2008a). However this
relation has a considerable scatter, and can merely give an approx-
imate estimate. Debattista et al. (2005) showed that for face-on, or
nearly face-on N-body simulated galaxies, an indicator of the pres-
ence and strength of a B/P bulge is the fourth order Gauss-Hermite
moment of the line-of-sight velocity dispersion, h4. However, this
relation has not been quantified in such a way which would allow
a direct measurement of peanut strength from h4. Studies of orbital
structure (Patsis et al. 2002; Skokos et al. 2002a) have also sug-
gested specific families of periodic orbits which are responsible for
giving the B/P bulge its height, but no direct measurement of the
strength of the B/P bulge is available from orbital structure either.

In order to measure the error due to peanut strength uncertainties,
we use a grid of models with varying peanut strength and compare
them to our fiducial peanut setup. These results can be seen in
Table 2 below. In this and in all subsequent tables, the term ‘Average
Error’, indicates the average error within the outer isophote of the
bar and ‘Maximum Error’ corresponds to the maximum error found
in the grid, excluding the central-most point. We see that an over-
or underestimation of the error by the same amount will produce
similar errors in the model. In all the cases studied, the error induced
by an incorrect peanut strength is always less than that induced by
not modelling a B/P bulge at all.

5.1.2 Peanut width uncertainties

In Table 3, we show the errors for a grid of models with different
peanut width errors. For all cases considered, the error induced due
to a miscalculation of the peanut width is less than that induced by
not modelling a peanut at all, apart from the maximum error induced
in the potential when the peanut width is 50 per cent larger than in
the fiducial scenario. This is due to a sharp increase in scaleheight
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Table 2. Percentage error due to peanut strength uncertainty.

Peanut strength Average error Maximum error
� Fx Fy � Fx Fy

+50 per cent 1.3 per cent 2 per cent 3 per cent 3 per cent 10 per cent 6 per cent
+25 per cent 0.7 per cent 1 per cent 2 per cent 1.5 per cent 5 per cent 3 per cent
−25 per cent 0.7 per cent 1 per cent 2 per cent 1.5 per cent 6 per cent 4 per cent
−50 per cent 1.4 per cent 3 per cent 4 per cent 3 per cent 14 per cent 10 per cent
no peanut 3 per cent 8 per cent 10 per cent 7 per cent 37 per cent 28 per cent

Note. Average and maximum errors of the potential and forces for setups with different peanut strength
error, within the area enclosed by the outer isophote of the bar. The last row gives the error induced by
not including a B/P bulge in the model at all.

Table 3. Percentage error due to peanut width uncertainty.

Peanut width Average error Maximum error
� Fx Fy � Fx Fy

+50 per cent 3 per cent 5 per cent 6 per cent 15 per cent 26 per cent 27 per cent
+25 per cent 1 per cent 2 per cent 3 per cent 4 per cent 10 per cent 12 per cent
−25 per cent 1 per cent 2 per cent 3 per cent 3 per cent 11 per cent 6 per cent
−50 per cent 2 per cent 5 per cent 6 per cent 5 per cent 11 per cent 15 per cent
no peanut 3 per cent 8 per cent 10 per cent 7 per cent 37 per cent 28 per cent

Note. Average and maximum errors of the potential and forces for setups with different peanut width
errors within the area enclosed by the outer isophote of the bar. The last row gives the error that
would be present if we do not model a B/P bulge at all.

in the central region for large peanut widths (see solid red line in
Fig. 10c), which is where the potential is most affected. This error
however is confined only to the potential and to the central most grid
points, and should not have significant effects on orbital calculations
in most of the galaxy.

5.1.3 Peanut length uncertainties

Of the three parameters – length, strength and width – length has the
least uncertainty, due to a method proposed by Athanassoula et al.
(2014). The method determines the length of B/Ps for face-on and
moderately inclined galaxies, which uses the shape of the projected
isophotes in the bar region. They demonstrated that the barlens and
the peanut are the same component and therefore that the size of the
former can be used to estimate the length of the latter. For galaxies
with larger inclinations the length can be estimated from other
morphological features in the isophotes created by the B/P bulge
(Athanassoula & Beaton 2006; Erwin & Debattista 2013), while
orbital structure studies confirm the aforementioned results and also
give clues as to the length of the peanut (Patsis et al. 2002; Patsis,
Skokos & Athanassoula 2003). Due to all this, the uncertainties
of the length estimates are rather small, certainly smaller than the
corresponding ones for strength and width, which is why we use a
smaller range of uncertainties for the peanut length.

We carry out comparisons for a grid of models with different
peanut length errors and give the results in Table 4. As expected,
the more we change the length of the peanut away from the fiducial
value, the larger the errors will be, although there is an asymmetry
in the error induced with respect to over- and underestimating the
length; by underestimating the peanut length by a certain amount,
we induce more error than by overestimating it by the same amount.
By decreasing the length of the peanut we induce more error in the
central regions of the galaxy, which is where the potential is most
affected, due to the two Gaussians overlapping in the centre and
thus increasing the scaleheight (see dotted magenta line, Fig. 10e).

This can be seen in Table 4, for the case of −30 per cent peanut
length where, for the potential, the maximum and average errors are
larger than that of the +30 per cent peanut length case.

For all the cases considered, the average error induced is smaller
or equal to that of not modelling the B/P bulge. Given that the length
is a fairly well-constrained quantity, large errors are not expected
to be present due to the peanut length in the modelling of the B/P
bulge.

5.1.4 Combinations of uncertainties

It is likely that a combination of different kinds of error will con-
tribute to the total error budget of a model of the B/P. It is not
in the scope of this paper to explore the full parameter space of
the possible error combinations, instead we choose a few cases in
order to get a feel of the amount of error that can be induced. By
‘combination of error’, we refer to a combination of all the differ-
ent sources of error. By ‘+50 per cent’ (‘−50 per cent’) we refer
to a setup with peanut strength and width which are 50 per cent
larger (smaller) than the fiducial value, and a peanut length which
is 30 per cent larger (smaller) than the fiducial. We do not find it
necessary to further increase the error in peanut length, since it is
the best constrained quantity out of the three parameters. The ‘+25
per cent’ (‘−25 per cent’) setup corresponds to one with peanut
strength, width and length which is 25 per cent larger (smaller) than
the fiducial value. In Table 5, we see that all the combinations of un-
certainties will introduce less error in the model than not including
a B/P bulge at all.

5.2 Periodic orbits

As shown in Section 4.2, the presence of a B/P bulge will affect the
extent and shape of the different families of periodic orbits which
make up the bar. In this section, we qualitatively explore the errors
introduced in the calculation of periodic orbits due to incorrect
modelling of a B/P bulge. To do this, we examine the characteristic
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Table 4. Percentage error due to peanut length uncertainty.

Peanut length Average error Maximum error
� Fx Fy � Fx Fy

+30 per cent 1 per cent 6 per cent 5 per cent 4 per cent 24 per cent 13 per cent
+16 per cent 0.9 per cent 3 per cent 3 per cent 3 per cent 12 per cent 7 per cent
−16 per cent 1 per cent 4 per cent 4 per cent 5 per cent 11 per cent 10 per cent
−30 per cent 3 per cent 8 per cent 9 per cent 13 per cent 25 per cent 28 per cent

no peanut 3 per cent 8 per cent 10 per cent 7 per cent 37 per cent 28 per cent

Note. Average and maximum errors of the potential and forces for setups with different peanut length
errors within the area enclosed by the outer isophote of the bar. The last row gives the error induced by
not modelling a B/P bulge at all.

Table 5. Percentage error due to combination of uncertainties.

Combination Average error Maximum error
� Fx Fy � Fx Fy

+50 per cent 2 per cent 3 per cent 5 per cent 6 per cent 23 per cent 22 per cent
+25 per cent 1 per cent 4 per cent 4 per cent 6 per cent 19 per cent 18 per cent
−25 per cent 1 per cent 6 per cent 6 per cent 5 per cent 29 per cent 22 per cent
−50 per cent 2 per cent 7 per cent 8 per cent 6 per cent 35 per cent 26 per cent

no peanut 3 per cent 8 per cent 10 per cent 7 per cent 37 per cent 28 per cent

Note. Average and maximum errors of the potential and forces for setups with different combinations
of errors within the area enclosed by the outer isophote of the bar. The last row gives the error induced
by not modelling a B/P bulge at all.

Figure 9. (a) Characteristic diagram for models with different B/P setups. See Fig. 7 and the text in Section 4.2 for more details on the interpretation of the
characteristic diagram. The dotted blue line gives the ZVC; the characteristic diagram for the model with 0, 50 and 100 per cent the fiducial peanut strength
is given by the dashed red line, the magenta dash–dotted line and the solid black line, respectively. (b) The same 3/1 orbit, which cuts the y-axis at y = 1, in
three models: without a B/P bulge (dashed red line), with 50 per cent peanut strength (magenta dash–dotted line) and with 100 per cent peanut strength (black
solid line).

diagram of the most relevant families of periodic orbits for three
models with different peanut strengths (100, 50 and 0 per cent of
the fiducial strength), shown in Fig. 9(a).

For the model with 50 per cent the fiducial strength the extent
of the x2 orbits is reduced by ∼19 per cent, while if we do not
add a B/P at all, the extent of the x2 family is reduced by ∼43 per
cent (more than double the error for the 50 per cent peanut strength
case).

The bifurcation locus of the 3/1 family for the model with 50 per
cent the peanut strength occurs about halfway between the locus of
the models with and without a B/P bulge. Additionally, the extent

of the 3/1 family in the characteristic diagram for this model is
almost the same as for the model with the fiducial peanut, while the
extent of the 3/1 family without a B/P is significantly shortened. In
Fig. 9(b), we can see how the 3/1 orbits are affected by the incorrect
modelling of the B/P bulge: for the same cut along the y-axis the 3/1
orbits are more elongated in the case with the fiducial peanut model,
while they become less elongated and more concave with respect to
the bar as the peanut strength is reduced. However, as expected, the
orbits in the model with 50 per cent the peanut bulge better match
the orbit of the fiducial B/P setup than the model without the B/P
bulge.

MNRAS 450, 229–245 (2015)

 at Instituto de A
strofisica de C

anarias on February 24, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
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Figure 10. Top row – left: values of z0 for the fiducial peanut strength (solid thick black line), for 50 per cent larger (solid thin red line), 25 per cent larger
(dashed green line), 25 per cent less (dotted magenta line), 50 per cent less (dot–dashed cyan line) and 0 per cent peanut strength, i.e. an isothermal sheet (thin
solid black line). Right: bar-induced torque QT as a function of radius for models with the aforementioned height functions (respective colours). Middle row –
left: the values of z0 for the fiducial peanut width (solid thick black line), 50 per cent larger (solid thin red line), 25 per cent larger (dashed green line), 25 per
cent less (dotted magenta line) and 50 per cent less peanut width (dot–dashed cyan line). Right: bar-induced torque QT, for aforementioned models (respective
colours). Bottom row – left: the values of z0 for models with the fiducial peanut length (thick solid black line), 30 per cent longer peanut (dashed red line), 30
per cent shorter peanut (dash–dotted green line) and a model without a peanut (i.e. 0 per cent peanut strength-thin solid black line. Right: bar-induced torque
QT for the aforementioned models (respective colours). In all plots, the vertical lines correspond to the positions of the peanut maxima for each respective
height function.

As already noted in Section 4.2, the x1 family of orbits is also
affected by the presence of the B/P bulge, when the maximum
extent of the orbits reach the region where the effect of the B/P is
maximum, i.e. around (x, y) = (±3 kpc, 0 kpc). On the characteristic

diagram this occurs in the region around (EJ, y0) = (0.9, 0.5 kpc).
However, even by underestimating the strength of the B/P by 50 per
cent, the x1 family is quite similar to the x1 family of the fiducial
B/P case.
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Figure 11. Left: values of z0 for different combinations of uncertainties. Right: strength of non-axisymmetric forcings QT as a function of radius, for the
different combinations of uncertainties. In order to not overclutter the plot, the positions of the peanut maxima are given by the vertical arrows, from left to
right, for the −50 per cent, −25 per cent, fiducial, +25 per cent and +50 per cent cases.

We see that in general, the characteristic diagram of the model
with 50 per cent the fiducial strength has features which are more
towards the fiducial peanut model and therefore even with such
a large error in peanut strength, the characteristic diagram of this
model reproduces relatively well the characteristic diagram of the
fiducial B/P model and certainly better than the model without
a B/P bulge. Similar results are found when considering errors
in peanut width and length, and we therefore conclude that it is
preferable to include a B/P in the model; the orbital structure of the
model is significantly affected when a B/P bulge is present, and by
adding a B/P, even with large errors in its parameters, the periodic
orbits reproduce the correct structure more closely than when not
including a B/P at all.

5.3 Bar strength

In this section, we examine how both the relative errors of QT and
those of its maximum value Qb will be affected by uncertainties in
the different parameters of the peanut model. We also introduce a
new measure of bar strength, Qint

T , which takes into consideration
the integrated bar-induced torque, along the entire range of the bar.
We do so because even though Qb remains relatively unchanged
when adding a B/P bulge to the model, QT over its whole range is
significantly affected (see for example Fig. 10f and Table 1), and
we wish to have a measure of this change with a single number. The
bar strength as defined by Qint

T is given by

Qint
T = 1

rdisc

rbar∫
0

QT dr, (18)

where rdisc is the disc scalelength.
To get a good estimate of the difference of QT between two

models over the entire radial range, it is best to carry out a point by
point comparison, and then consider the radially averaged relative
QT error. The relative error of Qint

T is a better proxy for this error
than Qb, although there are cases where the relative error of Qint

T is
small, while the average relative error of QT is much more significant
(such as the first row of Table 8) or vice versa (first row of Table 9).
Therefore, it is possible to have two cases with identical Qint

T , but
locally different QT.

5.3.1 Peanut strength uncertainties

We see in Figs 10(a) and (b) that QT increases as we reduce the
strength of the peanut, and it reaches its maximum value when the

Table 6. Percentage error of bar strength due to peanut strength uncertainty.

Peanut 〈Error QT〉 MAX(Error QT) Qb Qint
T

strength

+50 per cent 8 per cent 17 per cent 1.4 per cent 6 per cent
+25 per cent 4 per cent 9 per cent 0.7 per cent 3 per cent
−25 per cent 5 per cent 11 per cent 0.5 per cent 4 per cent
−50 per cent 11 per cent 26 per cent 1.6 per cent 7 per cent

no peanut 27 per cent 74 per cent 4 per cent 20 per cent

Note. The error induced in the bar strength due to different amount of
error in the peanut strength. We see the effect of these uncertainties on the
average and maximum relative error in QT (〈Error QT〉 and MAX(Error QT),
respectively), as well as on the relative errors of Qb and Qint

T .

peanut strength is zero, which corresponds to the height function of
a flat isothermal sheet.

The values of the average and maximum relative errors of QT

(〈Error QT〉 and MAX(Error QT), respectively), as well as the rel-
ative error of Qb and Qint

T can be seen in Table 6 (and in all sub-
sequent tables in the following subsections). We see that when we
compare an isothermal sheet to the fiducial peanut model the error
in Qb is of the order of 4 per cent. This is not representative of
the large change that the average relative error of QT undergoes
(27 per cent). This is due to the fact that the maximum of QT does
not change much, even though QT itself is affected by a significant
amount over its entire range (see Fig. 10b). On the other hand, the
change in Qint

T , which takes into account the whole bar region, is
more representative of the change in the average relative error of QT

(20 per cent).
In all the cases and for all the measurements of bar strength, the

error introduced in the model due to uncertainty in peanut strength
is not as large as the error introduced when not including a B/P
bulge in the model.

5.3.2 Peanut width uncertainties

We compare setups with varying peanut widths to our fiducial
model. Comparisons for QT can be seen in Figs 10(c) and (d)
and as previously mentioned, the mismatch between the different
models is found when the scaleheights of the models are different.
The extent of the region of QT which is flattened is reduced when
the width of the B/P is reduced, as expected. Conversely, when we
increase the width of the B/P bulge, the area of QT which is flattened
is increased.
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Table 7. Percentage error of bar strength due to peanut width uncertainty.

Peanut 〈Error QT〉 MAX(Error QT) Qb Qint
T

width

+50 per cent 6 per cent 12 per cent 9 per cent 6 per cent
+25 per cent 4 per cent 11 per cent 5 per cent 4 per cent
−25 per cent 7 per cent 20 per cent 3 per cent 6 per cent
−50 per cent 16 per cent 39 per cent 5 per cent 13 per cent
no peanut 27 per cent 74 per cent 4 per cent 20 per cent

Note. As in Table 6 but for errors in peanut width.

Table 8. Percentage error of bar strength due to peanut length uncertainty.

Peanut 〈Error QT〉 MAX(Error QT) Qb Qint
T

length

+30 per cent 16 per cent 35 per cent 17 per cent 5 per cent
+16 per cent 9 per cent 19 per cent 7 per cent 3 per cent
+8 per cent 5 per cent 10 per cent 3 per cent 1 per cent
−8 per cent 4 per cent 10 per cent 2 per cent 1 per cent
−16 per cent 9 per cent 19 per cent 4 per cent 3 per cent
−30 per cent 16 per cent 39 per cent 8 per cent 8 per cent
no peanut 27 per cent 74 per cent 4 per cent 20 per cent

Note. As in Table 6 but for errors in peanut length.

Values for the errors in the bar region are given in Table 7. We
see that errors in peanut width do not induce very large errors in the
average relative error of QT, compared to the errors induced when
not including a B/P bulge. The errors induced in Qint

T are not very
large either, although Qb, in the case of +50 per cent peanut width,
has a relative error larger than that of not including a B/P bulge.
This again shows the importance of carrying out a point by point
comparison, and a comparison of Qint

T , in order to determine the
errors induced in bar strength due to uncertainties.

5.3.3 Peanut length uncertainties

The results of this study are shown in Figs 10(e) and (f) and in Ta-
ble 8. Something worth noting in the Fig. 10(f) is that the flattening
of QT occurs at the positions where the maxima of the peanut are
found (which are indicated by the corresponding vertical lines).

In Table 8, we see the errors induced in the different measure-
ments of bar strength due to uncertainties in peanut length. For the
case where the peanut length is 30 per cent larger than the fiducial
value, Qb has a relative error of 17 per cent compared to the error
of 4 per cent in Qb when we do not add a peanut. This seems to
suggest that it can be counter-productive to include a B/P in the
model when there exist uncertainties in peanut length. However, if
we examine the average relative error in QT, we see that the error
induced in QT is in fact larger when we do not model a B/P than
when we miscalculate its length by +30 per cent. This points once
again to the need for examining the average errors of QT and not
just Qb, as the errors induced in Qb are not representative of the
error induced in QT.

We also see in Fig. 10(f), that even though QT of the two cases (of
fiducial peanut and +30 per cent peanut length) differs significantly
point by point, the area under the curve for the two cases is quite
similar. This is reflected in the value of the relative error of Qint

T ,
which only suffers a change of around 5 per cent while the average
error of QT suffers a change of 16 per cent. We see therefore that
Qint

T is not always a good approximation for the average relative
error of QT.

Table 9. Percentage error of bar strength due to a combination of
uncertainties.

All Errors 〈Error QT〉 MAX(Error QT) Qb Qint
T

+50 per cent 19 per cent 42 per cent 47 per cent 25 per cent
+25 per cent 16 per cent 35 per cent 28 per cent 14 per cent
−25 per cent 16 per cent 50 per cent 7 per cent 11 per cent
−50 per cent 20 per cent 63 per cent 7 per cent 17 per cent
no peanut 27 per cent 74 per cent 4 per cent 20 per cent

Note. As in Table 6 but for different combinations of uncertainties.

The important thing to note is that all the cases considered induce
less error in the average error of QT than not modelling the B/P at
all.

5.3.4 Combinations of uncertainties

As has already been discussed, the most likely scenario is that of
a combination of different sources of error affecting our model.
The combinations of errors shown in Table 9 and Fig. 11, are as in
Section 5.1.4. We see that the average and maximum relative error
in QT for all the combinations is less than that of not modelling the
B/P at all. The scaleheights and bar strength for these models can
be seen in Figs 10(a) and (b), respectively.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we present the effects of a B/P height function on the
potential, forces, periodic orbits and bar strength of a barred galaxy.
We show that such height functions significantly affect the results,
which consequently hints to the effects that a B/P bulge will have
on its host galaxy.

We present a method for calculating the potential and forces
due to the stellar component of a disc galaxy, based on a three-
dimensional integration of the stellar density distribution, which
can be obtained from images of not too inclined galaxies combined
with a given height function. The method gives robust results for
different test cases, as well as allowing for any general height func-
tion to be used, thus allowing for complex density distributions to
be modelled.

We used our code on an image extracted from a N-body+SPH
simulation of an isolated galaxy, together with two flat, position-
independent height functions, and two position-dependent height
functions. Of the two position-dependent height functions, one
models a peanut bulge and one models a boxy bulge. To create
an accurate and physically motivated fiducial height function for
the peanut, we shaped and fitted our peanut height function to the
B/P bulge of the simulated galaxy.

We found, in accordance with previous results in the liter-
ature (Laurikainen & Salo 2002), that for the two flat height
functions the potential and forces do not vary much, provided the
setups have equivalent scaleheights. This also holds true for the bar
strength QT, which does not change much for different flat height
functions.

However, we found that for boxy or peanut height functions the
potential and forces vary significantly with respect to the case in
which a flat height function is used (see Fig. 5). For the potential,
the difference can be up to 7 per cent for an extended region within
the bar. For Fx the difference can be as large as 37 per cent, while
for Fy this difference can be as large as 28 per cent. We therefore
concluded that if a B/P bulge is present, one should include it when
creating a dynamical model of the galaxy.

MNRAS 450, 229–245 (2015)

 at Instituto de A
strofisica de C

anarias on February 24, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


244 F. Fragkoudi et al.

To further confirm this result, we examined the effect of the
B/P bulge on the morphology of the most important families of
periodic orbits found in barred galaxies. We see that by taking into
account the B/P geometry (i.e. by using our fiducial peanut height
function) for a given energy, the elongation of the x1 orbits – the
bar-supporting orbits elongated parallel to the bar – is decreased;
this effect is most noticeable for orbits in the region where the B/P
is maximum (around ±3 kpc, see Fig. 7a) as expected. By adding a
B/Pt to the model the extent of the x2 family – the family of orbits
perpendicular to the bar – is increased by ∼43 per cent (see Fig. 6b),
as is the distance between the two ILRs. Additionally, the position
of the 3:1 resonance is changed; the 3/1 family – elongated along
the bar and asymmetric with respect to the y-axis – appears at larger
energies and is much more extended in the characteristic diagram
(see Fig. 6b). All the aforementioned effects will have an impact
on the stellar as well as the gaseous kinematics of the galaxy. The
shape and strength of the shocks in the gas will be affected, which
in turn affects the amount of gas inflow to the central parts of the
galaxy. This could have an impact on the formation of discy bulges
and possibly on the fuel reservoir for AGN activity. We plan to
investigate in future work the extent of the effects of B/P bulges on
gas flows in galaxies.

We also studied the effect of the B/P bulge on the bar strength,
as given by the non-axisymmetric forcings due to the bar, QT. The
shape as well as the maximum of QT are significantly affected
by taking into account the geometry of a B/P bulge. We found it
useful to define a new quantity for measuring bar strength, Qint

T ,
which allows us to extract information about the strength of the bar
by using its whole extent. The presence of a Boxy/Peanut bulge,
especially at the points where its scaleheight is maximum, reduces
the bar strength (see Fig. 8) which confirms that the presence of a
B/P bulge reduces the bar induced torques.

Even though taking into account the geometry of B/P bulges
will affect the model, it is not trivial to obtain their parameters
observationally. We therefore examined how much error would be
introduced in the results by introducing uncertainties in the B/P pa-
rameters. Each source of error individually (peanut strength, peanut
length and peanut width), as well as combinations of the different
sources of error, induce errors in the results which in general are
considerably less than those induced by not modelling the peanut at
all. So, for realistic values of uncertainties in the peanut parameters,
the error in including a peanut will be less than the error induced
by not including a peanut in the model.

The simulated galaxy, we chose for this study contains a strong
bar, corresponding to bar classes 5 and 6 from the Buta & Block
(2001) classification. Therefore, the results of this study can be
straightforwardly and quantitatively applied to real galaxies with
similar bar and peanut strength, which account for approximately
20 per cent of SB galaxies in the local Universe. Our results are also
qualitatively relevant to all barred galaxies in the secular evolution
phase, although for reduced bar and peanut strength the effect of
the B/P bulge on the model is also reduced. In this work, we have
presented an in depth study of the effects of a B/P bulge on its
galaxy model, focusing on a particular test case; we plan to present
a quantitative statistical study of the effects of these bulges on their
host galaxies elsewhere.
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A P P E N D I X A : T H E A NA LY T I C G A L A X Y
M O D E L

To model the disc, we use a Miyamoto-Nagai density (Miyamoto
& Nagai 1975) which is defined by the potential-density pair,

�MN(R, z) = − GMD√
R2 + (a + √

z2 + b2)2

, (A1)

ρMN(R, z)

=
(

b2MD

4π

)
aR2 + (a + 3

√
z2 + b2)(a + √

z2 + b2)2

[R2 + (a + √
z2 + b2)2]5/2(z2 + b2)3/2

, (A2)

where R and z are the cylindrical coordinates, G is Newton’s gravi-
tational constant, M the total mass of the system and a and b are its
characteristic lengths. We set the parameters a and b to 9 and 1.8,
respectively, such that we obtain a realistic exponential disc with a
scalelength of about 3 kpc with its mass set to 0.56 times the total
mass of the system (Gadotti 2011).

The bulge is modelled using a Dehnen sphere (Dehnen 1993),
where we set γ = 0.5 in order to obtain a cuspy density distribution.
The potential density pair is given by

ρ(r) = 5

8π

rBMB√
r(rB + r)7/2

, (A3)

and

�(r) = −2GMB

3rB

(
1 −

(
r

r + rB

)3/2
)

, (A4)

where rB is a characteristic radius of the system. The mass of the
bulge is set to 0.34 the total mass of the model which is a typical
value for the bulge mass (Gadotti 2011).

The bar is modelled using a Ferrers ellipsoid (Ferrers 1877),
whose density is given by

ρ =
{

ρ0(1 − m2)n m ≤ 1

0 m ≥ 1
, (A5)

where m2 is

m2 = x2

α2
+ y2

β2
+ z2

γ 2
. (A6)

The central density of the bar is given by ρ0, while n sets the
decrease in bar density as a function of position and α, β and γ

give the sizes of the three semiprincipal axes. The mass of the bar
is 0.1 times the total mass, which is again a typical value for real
galaxies (Gadotti 2011). The bar’s semimajor axis is set to a = 5 kpc,
with an axial ratio of a/b = 2.5, and we use the inhomogeneous n
= 1 case.

When integrating orbits in these potentials, we do so in the ro-
tating frame of reference of the bar, where the bar potential rotates
with a pattern speed which is set such that corotation occurs just
outside the end of the bar within the range 1.4 > RCR/Rbar > 1,
where RCR and Rbar are the corotation and bar radius, respectively
(e.g. Athanassoula 1992b). The equations of motion in a rotating
frame of reference are taken from chapter 3 of Binney & Tremaine
(2008), where the fictitious forces due to rotation are taken into
account.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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