

This project is supported by the European Commission's FP7 Capacities Programme for the period April 2013 - March 2017 under the Grant Agreement number 312495.

DELIVERABLE D70.3

Results of Site-Testing Campaign at ORM and OT

WP70 Wavefront Control: Turbulence Characterization and Correction

1ST Reporting Period

November 2014

SOLARNET Project

PROJECT GENERAL INFORMATION

Grant Agreement number: 312495

Project acronym: SOLARNET

Project title: High-Resolution Solar Physics Network

Funded under: FP7-INFRASTRUCTURES: INFRA-2012-1.1.26 - Research Infrastructures for High-Resolution Solar Physics

Funding scheme: Combination of Collaborative Project and Coordination and Support Action for Integrating Activities

From: 2013-04-01 to 2017-03-31

Date of latest version of Annex I against which the assessment will be made: **13/02/2013**

Periodic report: 1st X 2nd 🗆 3rd 🗆 4th 🗆

Period covered: from 01/04/2013 to 30/09/2014

Project's coordinator: Dr. Manuel Collados Vera, IAC.

Tel: (34) 922 60 52 00

Fax: (34) 922 60 52 10

E-mail: mcv@iac.es

Project website address: http://solarnet-east.eu/

IAC TECHNOLOGY DIVISION

DS/IP-SNT/021v.1 DSIPSNT_021V1 October 14, 2014 Project Ref.: 312495

PROJECT / DESTINATION:

SOLARNET

TITLE:

WP70.2 SITE TESTING CAMPAIGN AT ORM AND OT - LONG BASELINE SHABARS (D70.3)

INSTITUTO DE ASTROFISICA DE CANARIAS

38200 La Laguna (Tenerife) - ESPAÑA - Phone (922)605200 - Fax (922)605210

AUTHOR LIST

Name	Function
José Marco de la Rosa	Instrument engineer

APPROVAL CONTROL

Control Name		Function
Revised by:	Christine Grivel	System Engineer
Approved by:	Manuel Collados Vera	WP70 Leader
Authorised by:	Manuel Collados Vera	Project Coordinador

DOCUMENT CHANGE RECORD

Issue	Date	Change Description
01	30/09/2014	First Issue

SUMMARY

Two long-baseline SHABAR instruments were deployed in the Canary Islands during 2011, one in *Observatorio del Teide* (OT), in Tenerife island, and another in *Observatorio del Roque de los Muchachos* (ORM), in La Palma island. The instruments acquire sunlight signal data that can be reduced to produce C_n^2 and r_0 profiles for the lower atmosphere layers up to some 10 Kms height. The mission of these instruments, together with other daytime turbulence measurement instruments, is the characterization of the daytime sky in both sites, OT and ORM, in order to select the best location for the European Solar Telescope.

This document describes the current status and the main tasks developed for work package *WP7.2. (Atmospheric Seeing)* of the SOLARNET project, including all work regarding instrument operation, acquisition and reduction software corrections and enhancements, and acquired data preliminary analysis.

Section 1 is a very brief introduction to the instrument.

Section 2 explains the standard instrument operation and the status and planned tasks are presented as divided in two main branches: operation and reduction software; and site testing data reduction and analysis.

Section 3 presents a detailed description and justification of the main tasks that had been developed in the near past. The tasks are classified into four categories: operation and reduction software; instrument operation, test and calibration; data reduction; and reduced data and comparison results publishing. The main performed tasks include: improvements in the data acquisition software, creation of an "observation replay" application, testing of the coherent functioning of both instruments at the same and different heights, calibration of instrument electronics, creation of scripts for batch reduction and comparison, and installation of a software architecture for supporting live data publishing.

Section 4 presents a preliminary site testing data overview. The preliminary character is due to the lack of some calibrations that need to be performed before a more supported analysis can be carried out. The data shown can work as an illustration of what the results can be expected to look like. This section shows graphs for some of the acquired data and explains why the data shown is preliminary, what error rates were estimated and how they were estimated.

Finally, ongoing and future work is detailed, presented in three categories: operation and data publishing software; instrument operation and calibration; and data reduction and comparative analysis.

TABLE OF CONTENTS

AUTH	OR LIST	2
APPR	OVAL CONTROL	2
DOCU	MENT CHANGE RECORD	2
SUMN	1ARY	3
TABL	E OF CONTENTS	4
LIST (OF ABBREVIATIONS	5
1.	THE LONG-BASELINE SHABAR INSTRUMENT	6
2.	INITIAL STATUS AND SCHEDULED TASKS	
2.1	STANDARD OPERATION	6
2.2	OPERATION AND REDUCTION SOFTWARE	
2.3	SITE TESTING DATA REDUCTION AND ANALYSIS	7
3.	DETAILED TASK DEVELOPMENT	8
3.1	OPERATION AND REDUCTION SOFTWARE	8
3.	1.1 Fake data feeding	
	1.2 Observation replay application	
	1.3 Integration of data reduction with data acquisition software	11
3.2	INSTRUMENT OPERATION, TESTS AND CALIBRATION	
	 2.1 Long-baseline SHABAR field tests 2.2 Electronic signal conditioning box calibration 	
3.3		
	3.1 New scripts for automatic daily data reduction and basic analysis comparison developed	and
3	<i>Reduction algorithm tuned to allow per-channel gain correction</i>	
3.4	REDUCED DATA AND COMPARISON RESULTS PUBLISHING	19
	4.1 http-php-mysql infrastructure installed and running	
3	4.2 Communication between Labview and database server achieved	20
4.	PRELIMINARY SITE TESTING DATA OVERVIEW	21
4.1	ESTIMATED ERROR RATES	
4.2	ILLUSTRATIVE PRELIMINARY REDUCED DATA	25
5.	FUTURE WORK	33
5.1	OPERATION AND DATA PUBLISHING SOFTWARE	
5.2	INSTRUMENT OPERATION AND CALIBRATION	
5.3	DATA REDUCTION AND COMPARATIVE ANALYSIS	33
ANNE	XES	34
A.	LIST OF REFERENCE DOCUMENTS	34

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 5 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX

LIST OF ABBREVIATIONS

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 6 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70 3.DOCX

1. THE LONG-BASELINE SHABAR INSTRUMENT

The long-baseline SHABAR (SHadow BAnd Ranger) instrument [RD.1, RD.2, RD.3] is a daytime seeing monitor. SHABAR's objective is characterizing the daytime turbulence distribution in atmospheric layers at different heights above the site where it is deployed.

Long-baseline SHABARs consist of 16 photodiodes which measure the sun scintillation, mounted at different distances in a 3 meter bar which tracks the sun. Each SHABAR includes the required electro-mechanical automatism and data acquisition stages including analog signal processing, analog to digital signal conversion, digital processing and data storage.

There are two functional long-baseline SHABARs in operation in the Canary Islands at present. They are usually deployed in two different sites: one in *Observatorio del Teide* (OT), in Tenerife island, and one in *Observatorio del Roque de los Muchachos* (ORM), in La Palma island.

Figure 1. Images of the SHABAR instrument.

2. INITIAL STATUS AND SCHEDULED TASKS

2.1 Standard operation

The two available long-baseline SHABARs were deployed in their respective locations, one in OT and another in ORM, during 2011. Since then, they have been observing almost daily during the months when the instruments are not limited to operate. The instruments cannot operate during some of the dates in winter because of limitations in their mechanical design. The standard observation months comprise the year period between May and November. Besides this winter stop, the observations also stop when immediate instrument maintenance is needed (cables failure, broken sensors, mayor problems). Non immediate maintenance is normally planned to be performed during the winter stops.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 7 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX

Each instrument works independently and, each operation day, the instrument produces raw and preprocessed signal data files that are copied in a permanent storage in the internal servers of IAC. Those files work as inputs for the reduction software that is run manually by the people in charge of monitoring the site testing data.

The following subsections present an overview of the status and planned tasks regarding the two current main work branches for this work package.

2.2 Operation and reduction software

The situation in February 2014 is that the instrument software allows raw data acquisition from its photodiodes and generation of a mean and cross covariance preprocessed dataset derived from the acquired data. This preprocessed dataset generation is an intermediate step in the process of obtaining the seeing estimation, which is the final objective. The remaining computation is performed through the use of reduction routines external to the instrument software. These routines are applied offline to the files obtained for an observation after the observation has ended and not in an automatic way. This way of functioning does not allow real time seeing monitoring.

Taking all that information into account, the following main tasks and improvements were planned to be developed in the following months:

- Addition of data reduction to the instrument software in order to monitor r_0 in real time
- Analysis of the obtained and reduced data
- Enhancement of quality, publication and accessibility of the final r_0 data

Besides the data acquisition software, some improvements in the instrument electromechanical automatism and control are also under study for future observation campaigns.

2.3 Site testing data reduction and analysis

Currently, the acquired data is stored from dates ranging from May 2010 to present for OT and from November 2010 to present for ORM. In both cases there exist intermittent stops due to technical limitations of the instruments and typical technical problems requiring instrument maintenance. The technical limitations constrain standard campaigns to take place from May to November. The situation in February 2014 was that only a portion of the data had already been reduced to obtain r_0 estimations and thorough comparisons between data obtained in OT and ORM had not been performed yet. Besides, checking that both instruments produce the same reduced data by operating them in parallel was a desired test for validating the differences between r_0 observed in the different sites. This test had never been carried out before.

According to that, the following main tasks were planned:

- Prepare and carry out the test of both instruments operating in parallel at the same site and very close together in order to check that the reduced data obtained is the same. These tests should include operation with both instruments mounted at the same height and at different heights so the r₀ height profile can also be validated.
- Conduct the standard campaign as usual with one SHABAR at OR and the other at ORM
- Reduce all data from previously and newly performed observations.

- Prepare some software infrastructure that reduces the data daily in an automatic fashion.
- Supervise the instruments operation in order to detect possible problems.
- Analyze and compare the reduced data and get conclusions regarding the differences in r₀ quality for both observatories.

3. DETAILED TASK DEVELOPMENT

3.1 Operation and reduction software

Some needs were detected in the operation software. The main developments regarding this software are described in this section.

3.1.1 Fake data feeding

Detected need:

The initial SHABAR data acquisition software could not be fed with data not coming from the actual acquisition hardware. This limitation made the software behavior difficult to test. Adding this feature would allow the software to be fed with artificially created data, for which you know the expected output according to the physical model you are assuming. In this way validation tests for controlled data can be easily performed for the data acquisition software.

Task development:

The data acquisition software was modified in order to add the new testing features. The current data acquisition software now allows to be fed from a saved raw data file (which can be easily produced with any general purpose programming language) or from a couple of predefined signal generation patterns.

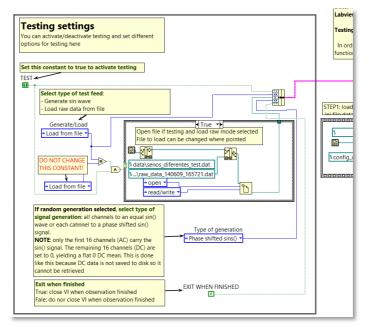


Figure 2. Block added for test mode configuration.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 9 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX

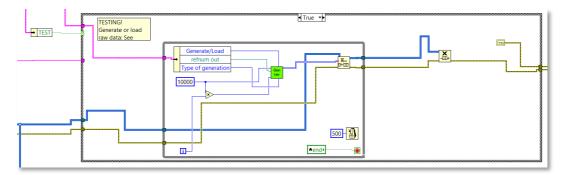


Figure 3. Block for substitution of hardware acquired data with test data.

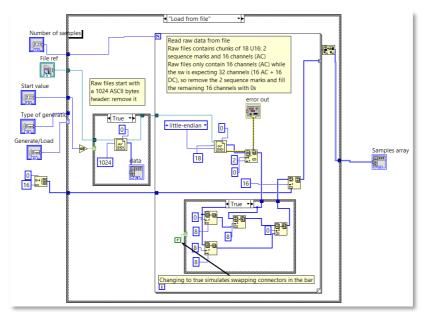


Figure 4. Virtual instrument (vi) for test data generation. Block generating data from a previously stored hardware acquired data file.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 10 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX

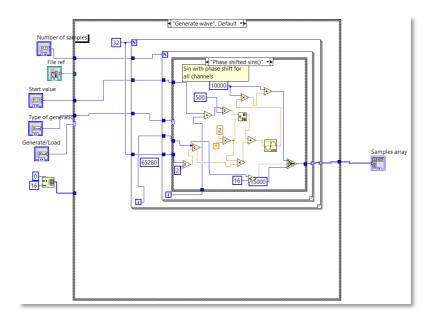


Figure 5. Virtual instrument (vi) for test data generation. Block generating 16 channels different phase sinusoidal signals.

3.1.2 Observation replay application

Detected need:

While performing standard daily observation checking, the need of an appropriate observation data exploration tool arose. Experience suggested that a data visualization application mimicking the behavior of the actual data acquisition application would allow data revision and would also allow learning how do some real effects (clouds, photodiode dirtiness or misbehavior, etc.) look in the acquisition application during the actual observation.

Task development:

An observation replay application was developed. It allows the user to open preprocessed data files saved as output for the observations by the data acquisition program and replay them. The software allows setting different replay speeds, stepping through the data and pausing. This software has proved very useful and is currently used very frequently (daily).

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 11 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70 3.DOCX

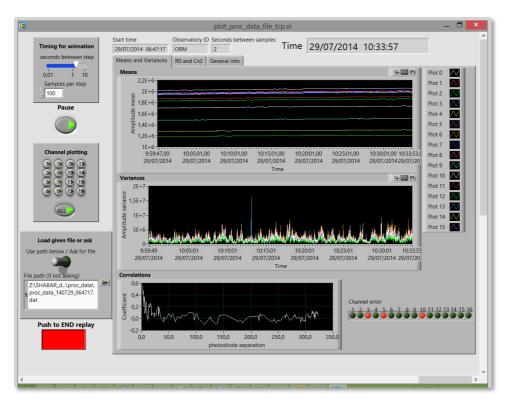


Figure 6. Observation replay application front panel.

3.1.3 Integration of data reduction with data acquisition software

Detected need:

In the initial situation, the data acquisition software only samples data from the instrument photodiodes and performs a basic covariance computation between the acquired signals. That data is saved when the observation finishes and, *after that*, the data is used as input to the reduction software that computes r_0 and C_n^2 estimations. This way of working does not allow real time monitoring of observed r_0 and C_n^2 . Adding reduction capability to the data acquisition software enabling real time monitoring of r_0 and C_n^2 would be interesting. Besides the convenience and possibility of real time data publishing, r_0 and C_n^2 monitoring can also give early clue of problems in the instrument operation.

Task development:

The trickiest part of this task was integrating the data acquisition software which is programmed using Labview with the data reduction software which is programmed in IDL. Those are two very different software development platforms and porting the reduction algorithm to Labview was not easy. A compromise between architectural complexity and ease of development was adopted. Both Labview and IDL include TCP communication capabilities, so a TCP communication channel can be established between both software platforms. A small communication protocol and the needed communication interfaces were developed so Labview can send preprocessed data to IDL and receive the reduction performed by IDL on the fly. The reduced data returned by IDL is adequately plotted in the Labview data acquisition application so achieving real time r_0 and C_n^2 monitoring.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 12 of 34	
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014	
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70 3.DOCX	

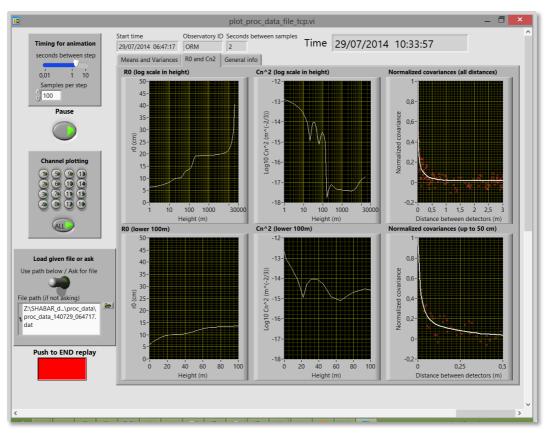


Figure 7. Reduced data view added to the operation software applications.

3.2 Instrument operation, tests and calibration

As mentioned before, some field tests needed to be carried out in order to validate the data generated by both SHABARs and in order to detect possible instrumental differences. The main related tasks are described in this section.

3.2.1 Long-baseline SHABAR field tests

Detected need:

The initial plan was installing both SHABARs, the one in OT and the one in ORM, at a similar height above the ground in order to avoid unwanted effects derived from ground wind and dust. Unfortunately, some technical issues obliged to install the SHABAR in ORM at ground level (although on the roof of a one-floor building) while the SHABAR in OT was installed on a 9 m high tower. Theoretically, the instruments allow the reconstruction of an r_0 profile for different heights, so just ignoring the lowest ones should be enough to eliminate the higher turbulence in lower layers. Anyway, a practical check was desirable. Besides, no previous tests to check that both instruments do produce the same data in the same observations conditions had been performed so you could not be sure that observed differences were completely result of differences in the sky or were result of physical differences between both instruments in some degree.

Task development:

Some tests were carried out during May and June months. The tests consisted in performing observations of both instruments in parallel installed very close together. Some observations

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 13 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX

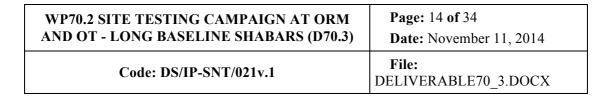

were performed with both instruments installed at ground level and some were performed with one instrument at ground level and the other installed on the top of a 9 meter tower. The tests included multiple observations and checking of signal calibrations. They required an amount of logistical and field tasks for transportation and redeployment of the instruments, being those tasks time requiring. New cables and temporary installations needed to be created.

Figure 8. Some images of the instrument redeployment and temporary installations.

The tests showed that there existed a slight but constant difference in the r_0 estimated by the two instruments (Figure 9). One of the instruments generated slightly better r_0 for the synchronized observations at the same height.

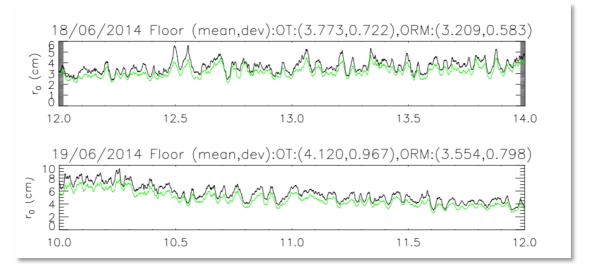


Figure 9. Reduced r_0 values for both instruments installed at ground level and very close together.

This circumstance led to further tests that pointed out that there were deficiencies in the calibration of the electronic signal conditioning boxes (each instrument has one). The tests showed that the boxes were being incorrectly assumed to work according to the theoretical electronic circuit description. The tests suggested that the different signal channels should be calibrated independently in order to quantify their real deviation from the theoretical specifications. This finding led to the next described task.

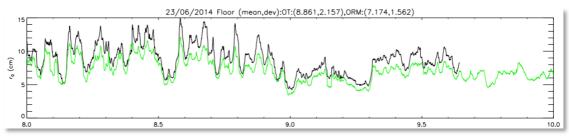


Figure 10. Initial results. Note black is constantly higher than green.

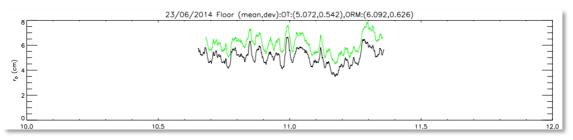


Figure 11. Results after swapping the electronic signal conditioning boxes between both instruments. Note green is now constantly higher than black.

3.2.2 Electronic signal conditioning box calibration

Detected need:

The previously described tests pointed out that there was some misassumption with the electronic signal conditioning boxes. Calibration of each channel in the box was needed in

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 15 of 34		
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014		
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX		

order to allow accurate reduction of the data. This calibration should be performed for all available electronic signal conditioning boxes (one for each SHABAR plus one spare).

Task development:

The electronic box corresponding to the SHABAR in OT was calibrated in the IAC laboratory. The box had to be disassembled and a testing setup was mounted in order to measure all channel gains. The values that had to be calibrated were the gain between AC and DC for each of the 16 channels. By appropriately plugging some testing points and injecting artificially generated signals, the actual gain values could be measured.

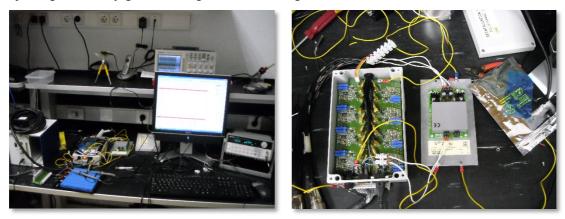


Figure 12. Images of the electronic testing setup.

The tests required the use of an oscilloscope and an electronic signal generator. Each channel output was measured for different signal inputs, varying in DC intensity, AC intensity and AC frequency. All values were tabulated and analyzed. Differences from the theoretical values for the gains were found. It was also found that, although slightly, the changes in the adjustable gain, which should not affect the reduced data magnitude, do actually affect it. Obtained gains ranged from 74 to 132, notably diverging from the theoretical 105.5 default value.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 16 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX

1	A Canal 1		В		С		D	Е	F	G	Н	I	J	K	
2	DC in		DC out		AC in		AC out	Var gain	Acout/Acin	AC	in * Var o	AC out / <		10Hz	
3	20	203	00000	232		236	23200	1.14285714			69.714286			10112	110
4		203		232		216	21000	1,14285714	97.2222222		46.857143	· · · · · · · · · · · · · · · · · · ·			100
5		203		232		196	19200	1,14285714	97,9591837		224	85,7142857			90
6		203		232		172	17000	1,14285714	98,8372093	1	96,571429	86,4825581			80
7		203		232		156	14600	1,14285714	93,5897436	1	78,285714	81,8910256	;		70
8		203		232		132	12600	1,14285714	95,4545455	1	50,857143	83,5227273	1		60
9		203		232		112	10900	1,14285714	97,3214286		128	85,15625	i		50
10										Me	dia	84,8361772			
11															
	DC in		DC out		AC in		AC out	Var gain	Acout/Acin			AC out / <		30Hz	
13		203		233		236	22600	1,14778325	95,7627119		70,876847	· · · · · · · · · · · · · · · · · · ·			110
14		203		233		216	20800	1,14778325	96,2962963		47,921182	· · · · · · · · · · · · · · · · · · ·			100
15		203		233		196	18800	1,14778325	· · · · · · · · · · · · · · · · · · ·		24,965517	1 A A A A A A A A A A A A A A A A A A A			90
16		203		233		172	16800	1,14778325	97,6744186		97,418719	· · · · · · · · · · · · · · · · · · ·			80
17		203		233		156	14700	1,14778325	94,2307692		79,054187	· · · · · · · · · · · · · · · · · · ·			70
18 19		203 203		233 233		132 112	12600 10500	1,14778325	· · · · · · · · · · · · · · · · · · ·		51,507389 28.551724	· · · · · · · · · · · · · · · · · · ·			60 50
20		203		233		112	10500	1,14778325	93,75		28,551724 dia	81,6791845 83,2769363			50
20										IVIE	ula	65,2709505	•		
	DC in		DC out		AC in		AC out	Var gain	Acout/Acin	AC	in * Var o	AC out / <		100Hz	
23	00 111	203		233	//0 ///	236	22400					82,6944061		100112	110
24		203		233		216	20400	1,14778325	94,4444444		47,921182	· · · · · · · · · · · · · · · · · · ·			100
25		203		233		196	18600	1.14778325	94.8979592		24.965517	1 () () () () () () () () () (90
26		203		233		172	16600	1,14778325	· ·		97,418719	· · · · · · · · · · · · · · · · · · ·			80
27		203		233		156	14100	1,14778325	90,3846154	1	79,054187	78,7471113	1		70
28		203		233		132	12400	1,14778325	93,9393939	1	51,507389	81,844193	1		60
29		203		233		112	10300	1,14778325	91,9642857	1	28,551724	80,1233906	;		50
30										Me	dia	81,7796989	1		

Figure 13. Measurements for one of the 16 AC/DC channel pairs.

Fortunately, data can be corrected easily to consider the newly measured gains, although reduction should be repeated for the corrected data. This means that the acquired data *can* be corrected *after* acquisition.

All available data will be corrected, reduced and analyzed again once the electronic signal conditioning box in ORM is calibrated. This task is planned to be performed after the standard 2014 campaign, during the winter stop.

3.3 Data reduction

The main tasks regarding improvements in data reduction are listed here.

3.3.1 New scripts for automatic daily data reduction and basic analysis and comparison developed

Detected need:

The main data reduction algorithm had already been programmed in IDL by February 2014. Anyway, the data was not being routinely reduced. It was clear that automatic reduction was a desirable feature.

Task development:

The output of both SHABARs is currently being stored in two directories in a network storage inside IAC's network. A good and simple approach to automatic data reduction is the creation of scripts that scan those directories in search of new unreduced files and that reduce them. This script was created and a task in a server was set so the script automatically starts once a day to perform the reduction of the files generated the day before (actually all files not having being reduced so far). This script also adds some useful preliminary preprocess of the data like generating a comparative graph between OT and ORM observations and a csv table with a reduced data summary for all the dates available.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 17 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70 3.DOCX

```
pro bulk_reduction
```

```
start reduction date = '140722'
; Reduce OT data
 print, 'Reducing OT data'
  gains = [ $
    83.27693629, 103.3495171, 98.41538635, 79.77605354, $
   118.991975,\ 125.6931482,\ 104.6807133,\ 122.4109695,\ \$
    92.92471291, 102.2927067, 95.44114573, 81.93536067, $
   116.6201249, 131.3037047, 75.60411812, 83.79325673 $
  in dir = 'Z:\SHABAR data\OT\proc data'
  out_dir = 'E:\Datos\Shabar\Reduccion\OT_corrected'
 bulk reduce, in dir, out dir, from date=start reduction date, gains=gains
; Reduce ORM data
 print, 'Reducing ORM data'
  gains = dblarr(16)+105.5 ; Using default gains!
  in dir = 'Z:\SHABAR data\ORM\proc data'
  out dir = 'E:\Datos\Shabar\Reduccion\ORM not corrected'
 bulk_reduce, in_dir, out_dir, from_date=start_reduction_date, gains=gains
; Generate comparisons
  in dir ot = 'E:\Datos\Shabar\Reduccion\OT corrected'
  in dir orm = 'E:\Datos\Shabar\Reduccion\ORM not corrected'
  out_dir = 'E:\Datos\Shabar\Reduccion\OT_ORM_OT_corrected'
  start reduction date = 140703
  args = command line args()
 dev_limit_set = (args ne "")?float(args[0]):1000.
 out_csv_filename
'Same heights last obs '+string(dev limit set,FORMAT='(F0.1)')+' dev.csv'
  ; Generate new comparisons
 bulk_compare, in dir ot, in dir orm, out dir, $
    from_date=start_reduction_date,dev_limit=dev_limit_set
  ; Generate the stats file
  out dir = 'E:\Datos\Shabar\Reduccion\stats'
 bulk compare, in dir ot, in dir orm, out dir, $
    from_date=start_reduction_date,csv_filename=out csv filename,$
    /only_stats,dev_limit=dev_limit_set
end
```

Figure 14. Main IDL bulk reduction script.

Although this script is currently working, its results are only illustrative as the reduction algorithm is using practically measured (real) gains for the electronic box in OT while it is assuming theoretical gains for the electronic box in ORM until it is measured in the future, during the winter observation stop. All available data must be checked, corrected and newly reduced when the real gains for the ORM box are measured. The designed script works in bulk fashion, so the task of a new bulk reduction can be carried out in an unsupervised fashion. The correction and reduction of all available data takes some 1-2 days computation and it statistics and graphs are generated in the same process once the new reduction finishes, some analyses and comparisons can be done very quickly.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 18 of 34		
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014		
Code: DS/IP-SNT/021v.1	File: Deliverable70-3 docx		

14 140808 1.148519907 0.950230895 43.111483242 107.4600330078 6.708687088 2.061448457 22.049371719 42 25 140809 1.965405173 0.4019821584 64.7695846556 199.9648895264 4.9815330505 4.4505877495 16.3396034241 39 27 140811 1.8129688501 0.4003355619 16.9230627319 56.0664482117 3.7173194885 9.0124473572 5 28 140812 1.9384091524 0.2300923011 26.862063116 7.034036437 5.6594824791 1.132555723 1.996071612 7 29 140812 2.1200823784 0.5416715741 126.008094786 423.7751159666 3.7148032188 1.2463172674 8.9057044983 6 30 140816 2.161265122 0.357293074 128.45107564 269.1154174606 4.2852916718 3.6727516724 7 7.270631363 7.7120890617 6 31 140816 2.048704940 0.293290726 0.030127229 0.0333700748 6.293144226 1.455415129 7.270631363	Same_heights_last_obs_1000.0_dev.csv - LibreOffice Calc — 🗖 🗙							
Iberation Sans IO ▲	2							
AtAMUI \checkmark \checkmark \checkmark \bullet								
A B C D E F G H 1 Date OT mean floor OT stddev floor OT mean floor ORM mean floor ORM stddev floor ORM mean floor ORM mean floor ORM stddev floor ORM mean floor ORM stddev floor ORM mean floor								
Date OT mean floor OT stddev floor OT mean 40m OT stddev 40m ORM mean floor ORM mean 40m ORM 1 Date OT mean floor OT stddev floor OT mean 40m ORM Mean 40m Mean 40m ORM Mean 40m Mean 40m <t< td=""><td>•</td></t<>	•							
23 140805 3,6655991077 1,4846389294 7,564084053 3,5013723373 3,4133160114 0,891825676 11,5928039551 24 140808 1,1486519907 0,9502309865 43,111148342 107,4600330078 6,706687088 2,0616488457 22,0493717194 42 25 140809 1,965409517.0 0,40355619 16,9233627319 58,064482117 3,717314885 2,050339473 12,6867849731 24 21 140811 1,929154155.0 0,403035622 2,041410065 3,1111793213 4,001229763 1,7821886539 9,012447572 5 28 140812 1,9384901524 0,2380926311 2,6429063416 70,340385437 5,6594824791 1,1325557232 15,9960317612 7 29 140812 1,2020827384 0,5416175741 126,00094786 28,7751515686 6,240314226 1,2463172674 6,3405403298 31 140814 2,120023784 126,40024986 3,873807438 6,6293144226 1,4541512707 2,6192054749 6 31 140818 2,046								
24 140808 1,1488519907 0,9502308965 43,1111488342 107,4600830078 6,7086687088 2,0616488457 22,0493717194 42 25 140809 1,9654095173 0,40192154 64,7695644558 199,9648985264 4,9815330505 4,4505877495 16,3396034211 29 12,0681349713 12,6967349731 24,450587749 12,05083949713 12,6967349731 24,450587743 12,6967349731 24,4505877431 12,6967349731 24,450587743 12,6967349731 12,6967349731 24,450587232 12,9967412 0,34003948802 23,0941410065 93,1181793213 4,001229763 1,7621886539 9,0124473572 5,5 28 140811 1,9384901524 0,2380926311 26,4829663416 70,340385437 5,550116922 2,0041573048 1,37560719055 13 30 140814 2,1161265122 0,57231374 12,6,0080947876 42,37751159668 3,7143032188 1,2463172674 8,067704893 6,6293144226 1,4554151297 28,50720479 6,619208472 12,346079479 6,6293144226 1,4554151297 28,507204483 5,3632049561	stddev							
25 140809 1.9654095173 0.4019821584 64,7695846585 199,0648805264 4.9815330505 4.4505877405 16.339603421 13 26 140810 1.8129688501 0.4406355619 16.923627319 58.0664482117 3.7173194885 2.0508389473 12.6967849731 24 140811 1.9291545153 0.400389800 23.094141005 93.1181793213 4.001229763 1.7621866539 9.0124473572 5 28 140812 1.9384901524 0.3400385032 5.6594424791 1.132555723 15.9960317612 7.7 29 140813 2.1946671826 0.340019444 63.38503223 13.390004248 5.50616922 2.0041573044 13.7566719055 13 30 140816 2.161265122 0.3572933674 12.64,95105664 23.97751159668 3.714603188 1.246317674 8.095704493 6 31 140816 0.2168709469 0.239287685 2.54828643799 51.6373825073 6.7210817337 7.20603131 1.36647815704 7.52516251 9.50483989712 12	.8273							
26 140810 1.8129686501 0.4006355619 16.923627319 58,0664482117 3.7173148855 2.0568389473 12.6967849731 24 27 140811 1.9291545153 0.4003988802 23.0941410065 93.1181793213 4.001220763 1.7821886539 9.0124473572 5 28 140812 1.3984801524 0.238028311 26,4629063416 70.340385437 5,6594824791 1.1325557232 15.9860317612 7 29 140813 2.120862784 0.5461718741 126,00074786 42.7751159686 3.7148032188 1.2463172674 8.057044983 6 31 140814 2.161265122 0.572933674 128,461507564 269,1154174005 4.285216718 3.6272516251 9.5044398972 12.720631361 1.36647815704 7 31 140818 2.0468704469 0.289326365 2.5422643799 51.6373825073 6.7210817337 2.720631361 3.6647815704 7 31 140818 2.0468704469 0.29390726 0.0331127229 0.0933570933 2.859293782 1.7476637363 <td>73094</td>	73094							
26 140810 1.8129686501 0.400355619 16.9233627319 58.0664482117 3.717314885 2.0560389473 12.6967849731 24 7 140811 1.9291545153 0.4003988802 23.0941410065 93.1181793213 4.001220763 1.7821886539 9.0124473572 5 28 140812 1.3944801542 0.238028311 26.4229063416 70.340385437 5.6594824791 1.1325557232 15.9860317612 7 29 140813 2.120823784 0.5406178741 12.600947876 42.77751159666 3.7148032188 1.246312674 8.057044983 6 31 140814 2.120823784 1.24641267449 6 6.6293144226 1.455415129 2.604378972 12.6043786749 6 31 140818 2.046870469 0.289326365 2.54828643799 51.6373825073 6.7210817337 2.720631361 3.6647815704 7 31 140818 2.046870469 0.289326352 2.5482280549 3.2444951933 2.146967449 6 3.27575444 4 3.62757544 <	01725							
28 140812 1.93840901524 0.2380926311 26.4829063416 70.340385437 5.6594247911 1.1325557232 15.9960317612 77 29 140813 2.1946678162 0.3408194184 68.3885603223 133.900604248 5.56016922 2.0041573048 13.7566719055 13 30 140814 2.1200823744 0.5416715741 126.000947876 423.7751159666 3.7148032188 1.2463172674 8.9057044983 6 31 140816 2.161265122 0.5727933674 126.4515075664 269.1154174405 4.2852916718 3.6272516251 9.504398972 12.757243137 7.26130261749 6 31 140818 2.048709469 0.3324097541 10.449142985 38.373307438 6.6293144226 1.4554151277 26.772051479 6 31 140812 2.757291305 1.566462183 5.3632049561 3.5449151983 2.3144059181 1.2606150614 5.998223775 4 31 140823 3.6870511055 1.98335060072 12.774184955 5.473328228 1.7681557777 2.5982737	86826							
29 140813 2.1946678162 0.3408194184 66.3885803223 133.900604248 5.56016922 2.0041573048 13.7566719055 13 30 140814 2.12046678162 0.3408194184 66.3885803223 133.900604248 5.56016922 2.0041573048 13.7566719055 13 30 140816 2.161265122 0.5572933674 126.451057684 269.1154174005 428.57916718 3.6272516251 9.504398972 12 31 140816 0.61878766 0.324097544 126.44023965 38.373307483 6.6293144226 1.4554151297 28.6192054749 6 31 140812 0.757293305 1.0983286365 25.4828643799 51.6373825073 6.7210817337 2.720631361 13.6647815704 7 31 140821 2.757291305 1.666462133 3.53622049541 3.640151993 2.31440519181 1.2360150144 5.9931561051 1.98315055 1.918315053 89.768409729 28.62794189453 5.473328228 1.761537368 6.349869374 3.707551773 383 30 140827 <td>31610</td>	31610							
30 140814 2,1200823784 0,5416715741 126,0080947876 423,7751159668 3,7148059688 1,2463126674 8,9057044983 6 31 140816 2,1612625122 0,3572933674 128,4515075684 269,1154174805 4,2852916718 3,6272516251 9,5048398972 122 140817 1,8167857866 0,324097544 10,440423965 38,373307483 6,6293144226 1,4554151297 26,6192054749 6 31 140818 2,0486709469 0,2839326356 25,4828643799 51,6373825073 6,7210817337 2,720631361 13,6647815704 7 34 140820 0,0297004512 0,0933070933 2,3582395782 1,74766373367 7,7260913051 1,5664661218 5,9632049561 3,5440151993 2,3144051911 1,2660150814 50926223755 4 36 140823 3,6819551355 1,924524390549 36,2006263733 7,7861390114 2,757606748 40,8805961609 92 37 140824 3,8870511055 69,722091343 26,2293996382 1,495451329707 23,5382273077	67391							
30 140814 2,1200823784 0,5416715741 126,0080947876 423,7751159668 3,7148059688 1,2463126674 8,9057044983 6 31 140816 2,1612625122 0,3572933674 128,4515075684 269,1154174805 4,2852916718 3,6272516251 9,5048398972 122 140817 1,8167857866 0,324097544 10,440423965 38,373307483 6,6293144226 1,4554151297 26,6192054749 6 31 140818 2,0486709469 0,2839326356 25,4828643799 51,6373825073 6,7210817337 2,720631361 13,6647815704 7 34 140820 0,0297004512 0,0933070933 2,3582395782 1,74766373367 7,7260913051 1,5664661218 5,9632049561 3,5440151993 2,3144051911 1,2660150814 50926223755 4 36 140823 3,6819551355 1,924524390549 36,2006263733 7,7861390114 2,757606748 40,8805961609 92 37 140824 3,8870511055 69,722091343 26,2293996382 1,495451329707 23,5382273077	14764							
31 140816 2,1612625122 0,3572933674 128,4515075684 269,1154174805 4,2852916718 3,6272516251 9,5048398972 12 32 140817 1,818767866 0,2838263625 2,4867034426 1,4554151297 28,6192054749 6 6,293144226 1,4554151297 28,6192054749 10,4940423965 33,3733071433 6,279144226 1,4454151297 28,6192054749 5 2,720631363 7,7208930672 2,720631363 7,7208930672 0,03311704747 7 3,73382073 7,720893072 2,29081305 1,5666462183 5,3632049561 3,5449151993 2,3144059181 1,2360150814 5,9926223755 4 31 140824 3,8619553334 1,0299307833 12,8542890549 3,6,2006263733 7,7661390114 2,7576067448 40,8805961609 92 31 140824 3,8870511055 1,918315053 89,768409729 26,6,7741894553 5,9431573686 6,3496889374 3,7075551723 277 31 140825 2,8272341743 2,6,7204189453 5,6,13649368225 5,9431573666 6,734968432	90333							
33 140818 2,0483709460 0,2893826365 25,4828643799 51,6373825073 6,7210817337 2,726631361 13,647815704 7,7 34 140818 2,0483709460 0,0923090726 0,0301127229 0,0933570936 2,8592395782 1,7476637363 7,7120890617 6 35 140821 2,7572591305 1,5666462183 5,3632049561 3,5449151993 2,3144059181 1,2360150614 5,98222375 4 36 140823 3,6619558334 1,208307833 12,8542800549 36,2006263733 7,786130114 2,7570067448 40,805501707 23,50287077 23,502870417	63517							
33 140818 2,0483709460 0,2893826365 25,4828643799 51,6373825073 6,7210817337 2,726631361 13,647815704 7,7 34 140818 2,0483709460 0,0923090726 0,0301127229 0,0933570936 2,8592395782 1,7476637363 7,7120890617 6 35 140821 2,7572591305 1,5666462183 5,3632049561 3,5449151993 2,3144059181 1,2360150614 5,98222375 4 36 140823 3,6619558334 1,208307833 12,8542800549 36,2006263733 7,786130114 2,7570067448 40,805501707 23,50287077 23,502870417	.4821							
41 408020 0.0297804512 0.039300726 0.0301127229 0.033570936 2.859239722 1.7476637363 7.712080017 6 35 140821 2.7572591305 1.566642183 5.3632049561 3.5449151993 2.3144059181 1.2360150614 5.992622375 4 36 140821 3.6619558334 1.0289307833 12.854209549 3.62006263733 7.7861390114 2.7576067444 40.88055610609 92 37 140824 3.8670511055 1.918315053 89,768409729 266,2794189453 5.47382228 1.7691557407 23,5326273077 32 38 140825 2.5172018433 26,220939632 1489,6555175781 5.9931573686 6.3499889374 37,072551727 277 277 37 31 140827 2.83273994660 6.637641212 0.4583133083 15,817342566 5.61364936629 3.0286672665 0.774697423 2.056833043 5 41 140828 3.2873994660 6.667694144 13.6823120117 77,04305766 3.1817543507 1.0078825561 8.69	95674							
35 140621 2,7572961305 1,5666462183 5,3632049561 3,5440151993 2,31440519811 1,2860150814 5,9826223755 4 36 140823 3,6619558334 1,0289307833 12,95428907493 36,2006263733 7,7861390114 2,7576067448 40,8805961609 92 37 140824 3,8870511055 1,918315053 89,768409729 286,2794189453 5,478328228 1,7691557407 2,3532873077 38 38 140825 2,5827281475 2,5772011843 28,2209396362 1489,65551757181 5,993157888 6,3499889374 37.0725517273 27.372405493 20,2058373808 1,7691557407 2,353281045 5 40 140827 2,839080811 1,1020752192 7,9411635399 7,1306762695 3,181753507 1,078625951 6,869246843 2 2,0586338043 5 41 140803 3,2111668858 0,571593821 13,6823120117 27,043050766 3,181753507 1,078625951 6,862468432 5 1,40831 3,7756323814 2,4739789963 17,0110321045 2,93349447052 6,302	01769							
36 140823 3,6619558334 1,0289307833 12,8542890549 36,2006263733 7,7861390114 2,7576067448 40,8805961609 92 71 140824 3,8670511055 1,918315053 89,768409729 286,2794189453 5,478328228 1,7691557407 23,5362873077 23,53686403 0,68674147 2,757616448 40,38054132 2,2058638043 55 40 404027 2,8339060611 1,100755122 7,9411635399 7,130676265 3,1217545507 1,377405884 35 41 140823 3,2873996466 0,68674417 1,3682120117 27,043050766 3,1817543507 1,07482596432 5 6,3020367622 3,1149661541 1,70325777 13 41 140831	10834							
140824 3,8870511055 1,918315053 89,768409729 286,2794189453 5,478328228 1,7691557407 23,5362873077 38 140825 2,5627281475 2,5772018433 26,220396362 1489,6555175781 5,993157808 6,349889374 37,072517273 277 140825 2,5627281475 2,5772018433 26,220396362 1489,6555175781 5,993157808 6,349889374 37,0725517273 277 19 140825 2,1145954132 0,4588133693 15,8173942566 56,136493629 3,0266726655 0,0774697422 22,0586338043 52 14 140828 3,2873096466 0,6687644124 13,6823120117 27,040350766 3,1817543507 1,0078825951 8,6924686425 5 14 140831 3,7756232814 2,4739789963 17,0110321045 29,334947052 6,3020367622 3,1149661541 17,0325737 13 14 140901 3,6137123108 1,9013493061 11,0460977554 6,6679987907 6,7405462265 5,977396965 13,6786575317 10 15	85469							
18 140825 2.5827281475 2.5772018433 26.2209396362 1489.655517571 5.993157886 6.3496889374 37.0725517273 277 99 140826 2.1145954132 0.4588133693 15.8173942566 56.1364936829 3.0866782665 0.774697423 22.058633043 5 10 140827 2.8339060611 1.1020752192 7.9411635399 7.1306762695 3.127856493 0.8667137027 17.377450584 35 14 140828 3.28739096466 0.686784124 13.6823120117 27.043050766 3.1817543507 1.0078825951 16.30924080537 17.29280805237 7.12083074307 1.0078825951 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.30924080555 16.309240805555 16.309240805555 16.309240805555 16.309240805555 17.0010321045 29.334447052 6.3020367622	67277							
99 140826 2.1145954132 0.4588133693 15.8173942566 56.1364936829 3.0866782665 0.774697423 22.0586338043 5 10 140827 2.8339080811 1.1020751192 7.9411635399 7.1306762865 3.1275455843 0.8667137027 17.3775405884 35 11 140827 2.8373904666 0.668741424 13.6822120117 27.043050766 3.1217543507 1.0078259551 8.692468432 5 12 140830 3.211868656 0.571593821 13.389405637 17.5298805237 7.1003360748 1.794390245 16.3092803955 6 13 140831 3.7756323814 2.4739789963 17.0110321045 29.3394947052 6.3020367622 3.1149661541 17.0325737 13 14 140901 3.6137123108 1.9013493061 11.0460977554 6.6679987907 6.7405462265 5.977396965 13.6786575317 10 16 - - - - - - - - - - - - - <td< td=""><td>76400</td></td<>	76400							
40 140827 2.8339080811 1.1020752192 7.9411635399 7.1306762695 3.127664643 0.8667137027 17.3775405884 35 41 140828 3.287306466 0.6667644124 13.6823120117 27.043050766 3.1817543507 1.007825951 8.6924686432 5 42 140830 3.2111666858 0.57159321 13.389405637 17.7023807482 7.1003360748 1.7943390245 16.3022030555 6 6.3020367622 3.1149661541 17.0325737 13 41 140901 3.6137123108 1.9013493061 11.0460977554 6.6679887907 6.7405462265 5.977396965 13.6786575317 10 45 - </td <td>.5408</td>	.5408							
41 140828 3,2873096466 0,6687644124 13,6823120117 27,043050766 3,1817543507 1,0078825951 8,6924686432 5 42 140830 3,2111668858 0,571593821 13,389405633 17,5298805237 7,100380748 1,7943300245 16,309203955 6 3,020367622 3,1149661541 17,032737 13 44 140901 3,6137123108 1,9013493001 11,0460977554 6,6679987907 6,7405462265 5,977369695 13,6786575317 10 45 46 -	24456							
42 140830 3.2111868858 0.571593821 13.3894605637 17.5298805237 7.1003360748 1.7548390245 16.3092803955 6 43 140831 3.7756323814 2.4739789963 17.010321045 29.3394947052 6.3020367622 3.1149661541 17.0325737 13 44 140901 3.6137123108 1.9013493061 11.0460977554 6.6679987907 6.7405462265 5.977396965 13.6786575317 10 46	98170							
43 140831 3,7756323814 2,4739789963 17,0110321045 29,3394947052 6,3020367622 3,1149661541 17,0325737 13 44 140901 3,6137123108 1,9013493061 11,0460977554 6,6679987907 6,7405462265 5,977396965 13,6786575317 10 45 46 47 48 49	83919							
44 140901 3,6137123108 1,9013493061 11,0460977554 6,6679987907 6,7405462265 5,977396965 13,6786575317 10 45	09314							
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65065							
46								
47								
	>							
hoja 1/1 Predeterminado 🔳 🗉 Suma=0	100							

Figure 15. Automatically obtained statistics for some recent observations. No overview graph is provided because, as explained in the previous text, these statistics will be recalculated after further calibrations are performed during the incoming months.

3.3.2 Reduction algorithm tuned to allow per-channel gain correction

Detected need:

As explained in the previous sections, the acquisition software is treating all data channels coming from the photodiodes as having the same AC/DC gain. This gain is assumed to be the theoretical 105.5 derived from the circuitry schematics. Once the electronics boxes are experimentally measured, the actual gains should be used to correct the data before reduction.

Task development:

The needed correction can be performed in several places in the acquisition-reduction software chain. The most reasonable place to add it seems to be in the acquisition software, so the acquired data saved is faithful to the *real* data. This approach, though, is trickier than adding the correction to the reduction script just before starting the actual reduction. The former approach requires data headers to be changed and would need the stop of the standard observation campaign in order to appropriately deploy the newly developed software including correctness tests. So, as a temporary first approach, the gain correction has been added to the reduction script but intends to be translated to the acquisition software in time for the next observation campaign after the winter stop.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 19 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70 3.DOCX

```
pro bulk_reduction
;########### Missing code
  gains = [ $
    83.27693629, 103.3495171, 98.41538635, 79.77605354, $
    118.991975, 125.6931482, 104.6807133, 122.4109695, $
    92.92471291, 102.2927067, 95.44114573, 81.93536067, $
    116.6201249, 131.3037047, 75.60411812, 83.79325673 $
    1
;########### Missing code
 bulk_reduce, in dir, out dir, from date=start reduction date, gains=gains
;########### Missing code
end
;########### Missing code
pro read_long_gains, filein, tt, time, sig, covar, dc, d, gains, err, bar
;########### Missing code
; Gain correction, just after load!
default gain = 105.5
for j=0,ndata-1 do data(2:17,j)=(data(2:17,j)/default gain)*gains
;########## Missing code
end
```

Figure 16. Key code lines performing gain correction in acquired data before reduction.

Adding the gain correction to the reduction algorithm was also useful in order to quantify the error that incorrectly calibrated gains induce in the reduced data. Several tests assuming high gains for all the channels and low gains for all the channels were carried out. Significant results of these tests are shown in the site testing data preliminary overview section later in this document.

3.4 Reduced data and comparison results publishing

First steps towards publishing the reduced data in real time have already been taken. This subsection summarizes them.

3.4.1 http-php-mysql infrastructure installed and running

Detected need:

A webpage is considered to be a proper way to publish results for reduction and data comparison from the site testing campaign. Some computation infrastructure is needed in order to provide support.

Task development:

A typical infrastructure consists in a scripting enabled http server and a database server. Typical scripting languages for the http server are php or python. The present application does not need to be very complex in its functionality. In principle, the generation of a webpage with some graphs for the latest observations (or even for some series of them) does

WP70.2 SITE TESTING CAMPAIGN AT ORM AND OT - LONG BASELINE SHABARS (D70.3)	Page: 20 of 34 Date: November 11, 2014		
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX		

not need very specific features from the scripting programming language. Given that, php has been chosen for convenience and prior experience working with it. An http-php-mysql infrastructure has already been installed for the development of the web page. The selected software package is called Wampserver and is available at http://www.wampserver.com/en/.

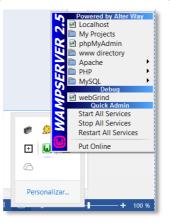


Figure 17. Wampserver configuration and operation menu.

3.4.2 Communication between Labview and database server achieved

Detected need:

In order to create a real time representation of the reduced data in the web server, the actual reduced data must be transferred to the server in some way.

Task development:

The typical way of doing that is by using the database server as a hub. Real time reduction data is generated by the acquisition software (Labview + IDL) so dumping the reduced data in the database should be performed by that software as an intermediate step. Currently, the database connection, writing and reading from Labview have already been achieved.

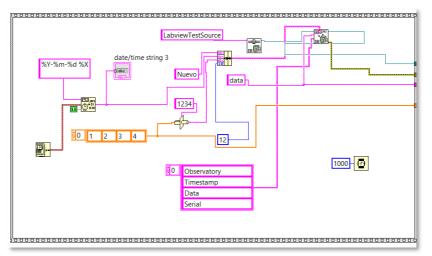
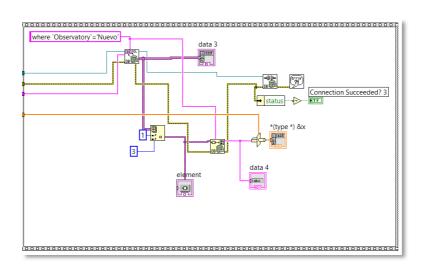
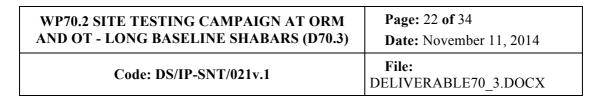


Figure 18. Database connection and data record insertion from Labview.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 21 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX




Figure 19. Database record selection query from Labview and deserialization from the received polymorphic type to Labview common types.

4. PRELIMINARY SITE TESTING DATA OVERVIEW

As explained in the previous sections, data reduction has been automated up to some degree but incorrect assumptions for the gains of the signal channels in the electronic signal conditioning boxes of the instruments were detected during operation and validation tests. These calibration problems can be easily fixed after observation, but the electronic signal conditioning boxes need to be calibrated in order to perform the corrections. The calibration process is time consuming, requiring several days of instrument stop. Given the fact that the instruments must stop during winter due to design limitations, the required calibration process has been scheduled to be carried out in that period for avoiding unnecessary loss of observation days.

At present, only illustrative measurements can be shown. During testing, a rough error rate estimation in the r_0 values for different gain values was calculated.

Some important findings were possible only because the observations were monitored. In fact, monitoring of the first observations of the 2014 campaign revealed that the signals measured by the SHABAR installed in OT had a significant noise consisting in 50 Hz pulse trains occurring in seemingly random periods in the order of some seconds. The observation replay application allowed the determination of the period when the noise was present. That period comprised from September 2013 up to the date of detection in May 2014. The noise was eliminated just by revising and correctly setting the electrical ground connections. All data in the cited period is unusable. Fortunately there were not many observation days between those dates.

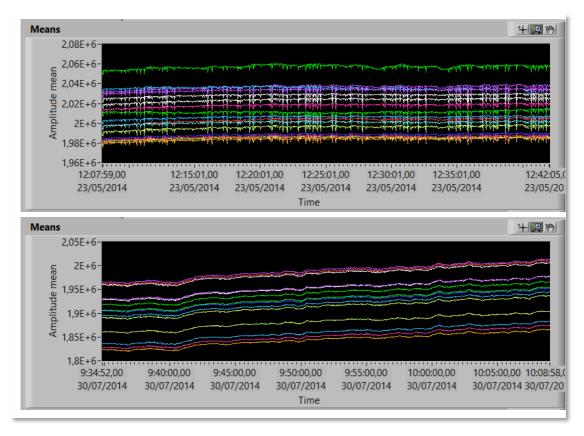
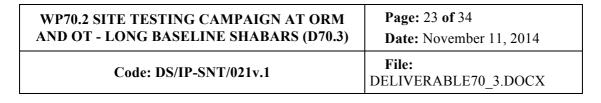



Figure 20. Effect of noisy pulses coming from the electric power grid. Up: Signals affected by floating ground connections. Down: correct signals once all ground connections were correctly set.

4.1 Estimated error rates

Once the gains for all channels were experimentally measured, some tests were carried out in order to estimate rough error rates. The gains assumed for the channels can be set before applying the reduction algorithm. For estimating errors, several reductions, using the experimentally measured (correct) gains and using artificially modified gains, were computed and compared. The idea was observing how much does the reduction change depending on the bias of the channel gains from the actual physical gains. The 16 experimentally measured gains range from 74 to 132 (see section 3.2.2 for further detail) and have an average value of 101. Reductions were produced with the newly measured gains, with all high gains (131) and with all low gains (75). Besides, a reduction using the default theoretical gain value (105.5) was also performed.

As a first estimation, a comparison between the reduction using the corrected gains and the assumed 105.5 gains results in an 11% - 15% difference in the reduced r_0 (Figure 21). This error could be assumed similar to the one expected for the electronic box at ORM. (TBC after ORM electronic box calibration in winter 2014)

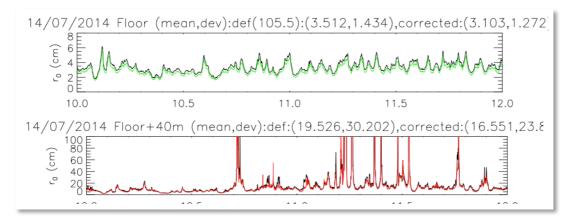


Figure 21. Data reduction results assuming theoretical 105.5 gains for all channels (black) and assuming the experimentally measured gains (green/red). Results are shown for r_0 estimations at ground level (up) and at 40 m above the ground (down).

From a more extreme and conservative point of view, for the cases shown in Figure 22 and Figure 23 a rise of 24% in gains produces 29% higher r_0 values, while a lowering of 29% in the gains produces 33% lower r_0 values. That means changes in 1.20% and 1.30% respectively for a 1% error in the gains. Given the experimental measures for the gains ranging between a lowest value of 74 and a highest of 132, and that the gain value currently assumed for the electronic signal conditioning box in ORM is 105.5 for all of them, an error in the gains around 27% could be possible (mean value of errors 74 (29%) and 132 (25%) compared to 105.5). Mean percentage of error for a 1% error in the gain is 1.25% ((1.20 + 1.30)/2), so a rough error in the reduction of up to 33.75% (27*1.25) positive or negative could be present in the values currently being reduced for the SHABAR installed in ORM.

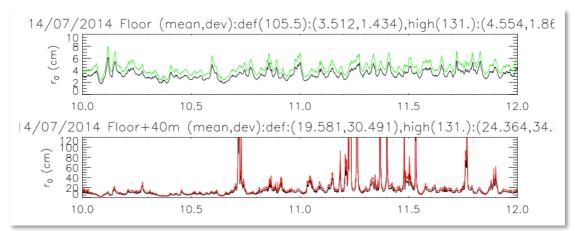
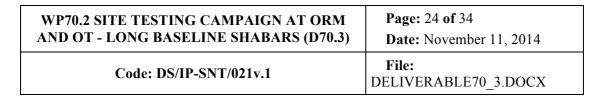



Figure 22. Data reduction results assuming theoretical 105.5 gains for all channels (black) and assuming very high gains (131) (green/red). Results are shown for r_0 estimations at ground level (up) and at 40 m above the ground (down).

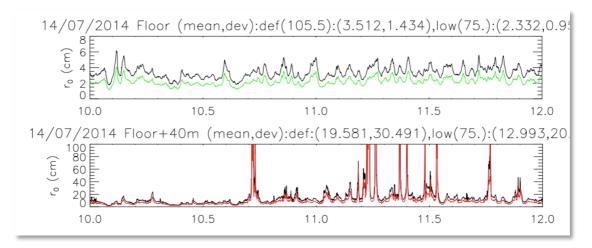


Figure 23. Data reduction results assuming theoretical 105.5 gains for all channels (black) and assuming very low gains (74) (green/red). Results are shown for r_0 estimations at ground level (up) and at 40 m above the ground (down).

Taking all this into account, the following graphs must be considered to be only illustrative as the r_0 reduction for the SHABAR in ORM will be corrected after the standard campaign. As explained, the r_0 error for the SHABAR in ORM for this campaign is expected to be some +/-10% but possibly as high as +/-30%.

WP70.2 SITE TESTING CAMPAIGN AT ORM AND OT - LONG BASELINE SHABARS (D70.3)	Page: 25 of 34 Date: November 11, 2014			
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX			

4.2 Illustrative preliminary reduced data

The following pages show graphs for some of the preliminary reduced data. As explained in in the previous section, these data should be considered as affected by a possibly important error. More specifically, data for ORM (green/red) is the one probably affected by a higher error. This error is expected to be around 11-15% but possibly as high as 33% as explained in the previous paragraphs. Cleaner reduced data will be produced as soon as the pending electronic box calibration is carried out.

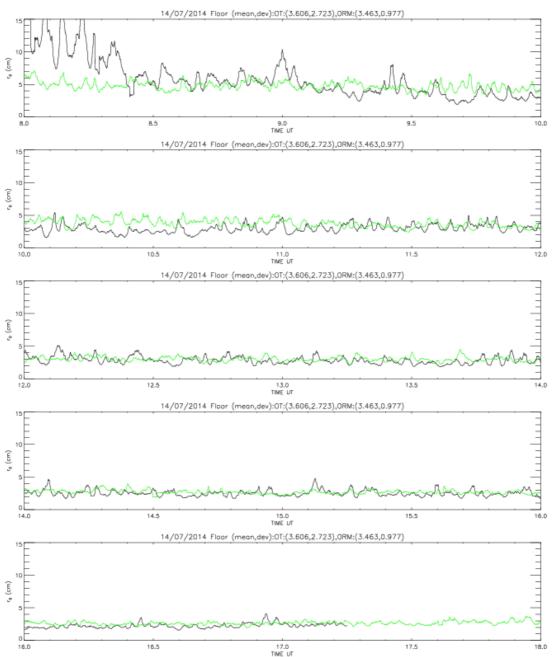


Figure 24. Reduced data for date 14/July/2014 at ground level. Black line represents data from OT and green line represents data from ORM.

WP70.2 SITE TESTING CAMPAIGN AT ORM AND OT - LONG BASELINE SHABARS (D70.3)	Page: 26 of 34 Date: November 11, 2014		
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX		

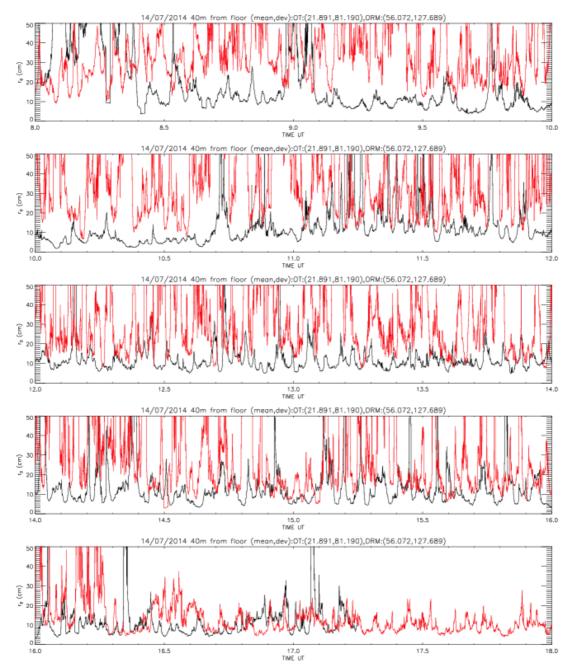
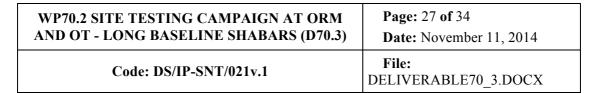



Figure 25. Reduced data for date 14/July/2014 at 40 meters above the ground. Black line represents data from OT and red line represents data from ORM.

Figure 24 and Figure 25 show data for date 14^{th} July 2014. This is an example day with good sky for observation. In this case, even though a similar r_0 is estimated at ground level, r_0 at 40 m above the ground is much better in ORM than in OT (TBC after ORM electronics box calibration).

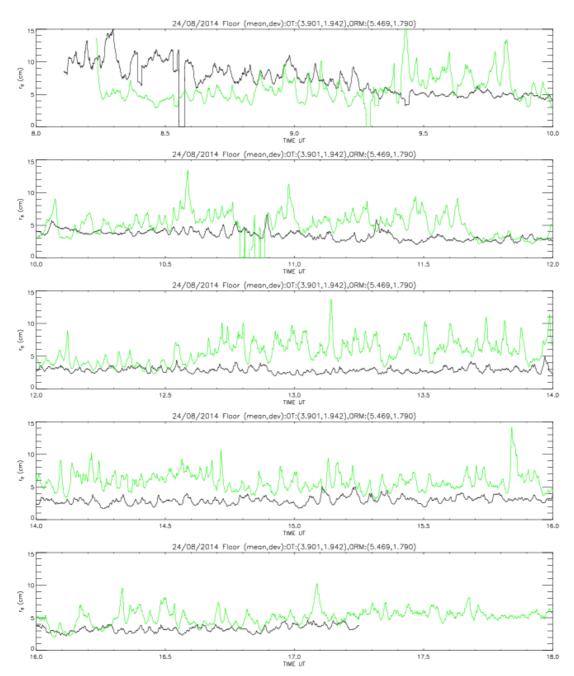
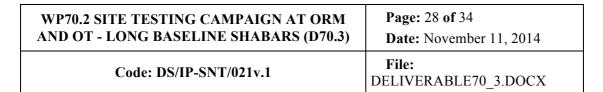



Figure 26. Reduced data for date 24/August/2014 at ground level. Black line represents data from OT and green line represents data from ORM.

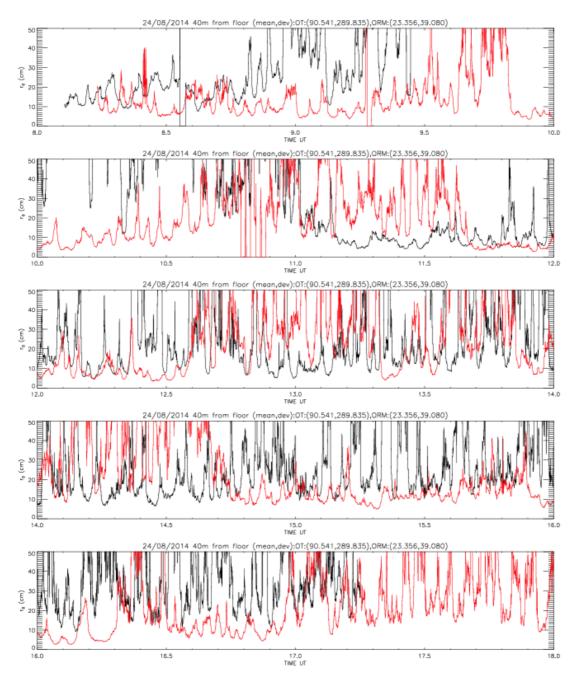


Figure 27. Reduced data for date 24/August/2014 at 40 meters above the ground. Black line represents data from OT and red line represents data from ORM.

Figure 26 and Figure 27 show data for date 24^{th} August 2014. This is an example day with good sky for observation. In this case, even though better r_0 is estimated at ground level for ORM, r_0 at 40 m above the ground is much better in OT than in ORM (TBC after ORM electronics box calibration).

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 29 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70_3.DOCX

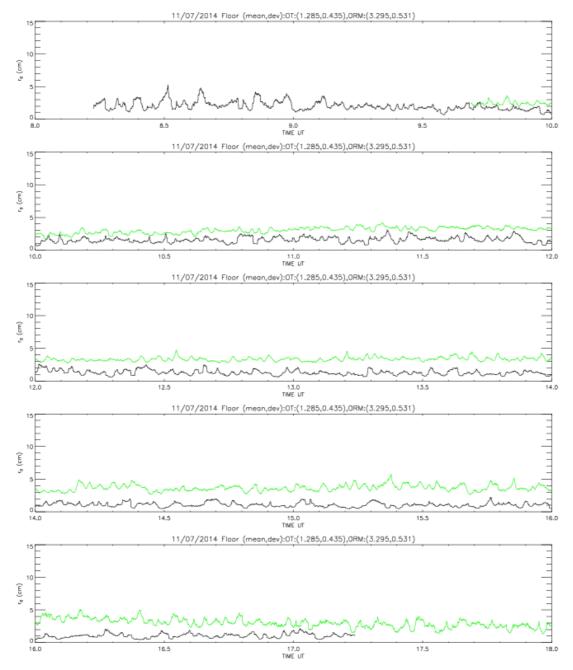
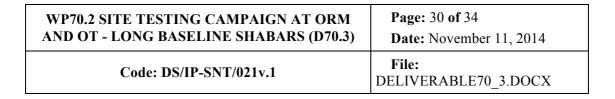



Figure 28. Reduced data for date 11/July/2014 at ground level. Black line represents data from OT and green line represents data from ORM.

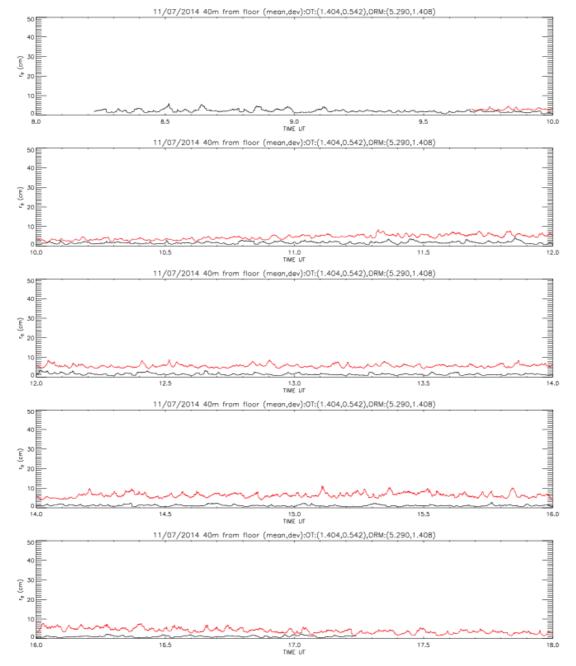
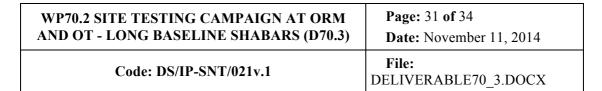



Figure 29. Reduced data for date 11/July/2014 at 40 meters above the ground. Black line represents data from OT and red line represents data from ORM.

Figure 28 and Figure 29 show data for date 11^{th} July 2014. This is a day with bad sky for observation. Both observatories show very bad r_0 at ground level and at 40 m above the ground (TBC after ORM electronics box calibration).

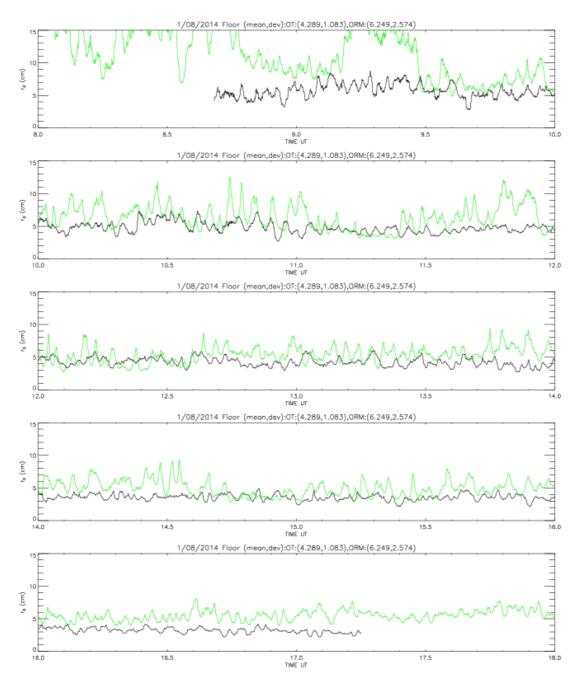
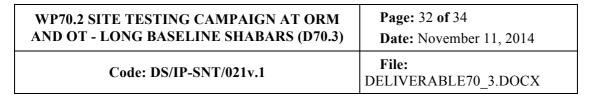



Figure 30. Reduced data for date 1/August/2014 at ground level. Black line represents data from OT and green line represents data from ORM.

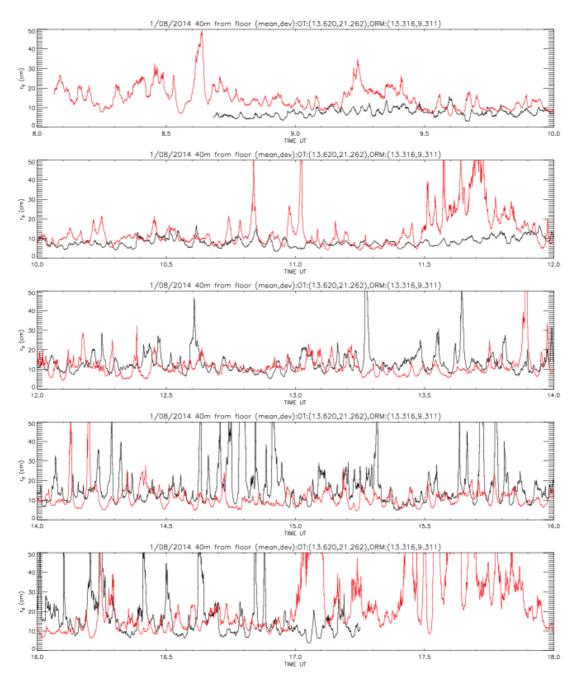


Figure 31. Reduced data for date 1/August/2014 at 40 meters above the ground. Black line represents data from OT and red line represents data from ORM.

Figure 30 and Figure 31 show data for date 1^{st} August 2014. This is a day with not especially good or bad sky for observation. This is a day when average r_0 in both observatories was quite similar (TBC after ORM electronics box calibration).

As stated several times before in this document, further analysis after finer reduction using corrected electronic gains must be carried out before being able to get conclusions. Comparison with data from other instruments in the same spots (short SHABAR and WFWFS at SST, scintillometers in Gregor, etc.) is also needed for cross validation.

WP70.2 SITE TESTING CAMPAIGN AT ORM	Page: 33 of 34
AND OT - LONG BASELINE SHABARS (D70.3)	Date: November 11, 2014
Code: DS/IP-SNT/021v.1	File: DELIVERABLE70 3.DOCX

5. FUTURE WORK

The currently planned tasks for future work are listed here. This list is subject to new additions in case new issues are found during development of the planned tasks and instrument operation.

5.1 Operation and data publishing software

- Addition of the specific experimentally measured gain values for the particular electronic box performing the observation to the data acquisition software.
- Improvement of reduced data visualization in the operation software. In particular, addition of an averaged r_0 plot for better monitoring.
- Specification of the reduced data database schema for the site testing webpage and addition of data dumping from acquisition software to the database.
- Deployment of newly developed operation software to both instruments (during winter observation stop).
- Webpage requirement specification, development and deployment.
- Completion of documentation for all the newly developed software (user and installation manuals, technical reports, etc.).
- Further integration of the webpage with the project servers if considered interesting.

5.2 Instrument operation and calibration

- Operation, monitoring and maintenance of both instruments until the end of the current campaign (November 2014).
- Calibration of ORM and spare electronic signal conditioning boxes after this campaign
- Preparation of the next standard campaign (foreseen in May 2015).

5.3 Data reduction and comparative analysis

- Transfer of automatic daily data reduction to a permanent IAC server.
- Study and specification of automatically generated plots and statistics.
- Acquired data revision in order to classify the observations and add possibly relevant information regarding operational conditions (height where the instrument was installed (floor/tower), site of installation (to avoid confusion with test observations), photodiodes erroneous behavior, etc.)
- Comparison of long SHABAR in OT and in ORM reduced data with reduced data available from other instruments (short SHABAR and WFWFS at SST, scintillometers in Gregor, etc.).

ANNEXES

A. LIST OF REFERENCE DOCUMENTS

RD.1	RPT-0014 Deriving (h) from a Scintillometer Array, F. Hill, R. Radick and M. Collados- ATST project documentation.
RD.2	WP8100: LONG-BASE SHABAR . PRINCIPLES OF OPERATION AND INSTRUMENT (PRE-IAC-8001-1A)
RD.3	SHADOW BAND RANGING (SHABAR) - USE AND MAINTENANCE MANUAL (TEN-IAC-8101-3A)