The Prosper package for \LaTeX

(Presentations without PowerPoint)

José Alberto Rubiño-Martín

jalberto@iac.es
Of course, ...
Of course, this presentation was prepared using Prosper.
Overview

- The *Prosper* class
- Why use *Prosper*?
- Basic Structure
- Compilation process
- Miscellaneous features
- *Prosper* at the IAC
- Useful links
- Examples
Prosper is a \LaTeX\ class for writing transparencies. All common \LaTeX\ macros are available.
Prosper is a LaTeX class for writing transparencies. All common LaTeX macros are available.

The Prosper class translates into two different formats:
The Prosper class

- **Prosper** is a \LaTeX\ class for writing transparencies. All common \LaTeX\ macros are available.
- The **Prosper** class translates into two different formats:
 - Adobe® *Postscript*™
The Prosper class

- Prosper is a \LaTeX\ class for writing transparencies. All common \LaTeX\ macros are available.

- The Prosper class translates into two different formats:
 - Adobe\textregistered PostscriptTM
 - Adobe\textregistered Portable Document Format TM (PDF)
Prosper is a \LaTeX\ class for writing transparencies. All common \LaTeX\ macros are available.

The Prosper class translates into two different formats:

- Adobe\textregistered\ PostscriptTM
- Adobe\textregistered\ Portable Document Format TM (PDF)

Presentations are viewed with the Acrobat Reader.
Required packages and programs

- `graphicx.sty`, `seminar.sty` (teTeX 0.9 and above)
- Slide styles need PSTricks and AMSLaTeX (amssymb)
- recent version of hyperref (≥6.69)
- Recent version of dvips (v. 5.85 and above)
- Recent version of Ghostscript (version ≥ 6.0) to produce PDF
\LaTeX{} packages for presentations

- PDFLaTeX
- slides class
- Seminar package
- Prosper class
- Beamer class
- TexPower
- ...

The \textit{Prosper} package for \LaTeX{} – p.6/22
Main features

- Simple structure, few new commands
Main features

- Simple structure, few new commands
- System independent (Windows, Unix, Mac,...)
Main features

- Simple structure, few new commands
- System independent (Windows, Unix, Mac,...)
- Step-by-step itemization environment
Main features

- Simple structure, few new commands
- System independent (Windows, Unix, Mac,...)
- Step-by-step itemization environment
- Several transitions types between slides: Replace, Split, Box, Wipe, Dissolve, ...
Main features

- Simple structure, few new commands
- System independent (Windows, Unix, Mac,...)
- Step-by-step itemization environment
- Several transitions types between slides: Replace, Split, Box, Wipe, Dissolve, ...
- Possibility to create own styles
Main features

- Simple structure, few new commands
- System independent (Windows, Unix, Mac, ...)
- Step-by-step itemization environment
- Several transitions types between slides: Replace, Split, Box, Wipe, Dissolve, ...
- Possibility to create own styles
- Add, replace, delete:

 Items can be added
Main features

- Simple structure, few new commands
- System independent (Windows, Unix, Mac,...)
- Step-by-step itemization environment
- Several transitions types between slides: Replace, Split, Box, Wipe, Dissolve, ...
- Possibility to create own styles
- Add, replace, delete:

 ... or replaced
Main features

- Simple structure, few new commands
- System independent (Windows, Unix, Mac,...)
- Step-by-step itemization environment
- Several transitions types between slides: Replace, Split, Box, Wipe, Dissolve, ...
- Possibility to create own styles
- Add, replace, delete:

 Items can be added, replaced and deleted
The following formula computes 8 correct digits per iteration (Ramanujan):

\[\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{(\frac{1}{2})_n(\frac{1}{2})_n\frac{3}{4}^n}{n!} (2^{1/2}(1103 + 26390n))^{1/(992)^{1/2}} \]
The quest for π

- The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{(\frac{1}{2})_n(\frac{1}{4})_n(\frac{3}{4})_n}{n!} \left(\frac{2\sqrt{2}(1103 + 26390n)}{(992^2)^{2n+1}}\right)$$
The quest for π

The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{(\frac{1}{2})_n (\frac{1}{3})_n (\frac{1}{4})_n}{n!^3} \frac{1}{(99^2)^{2n+1}}$$
The quest for π

- The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{(\frac{1}{4})_n (\frac{1}{2})_n (\frac{3}{4})_n}{n!} \frac{1}{(99^2)^{2n+1}} (2\sqrt{3}(1103 + 26390n))^n$$
Why use Prosper?

😊 if you don’t like PowerPoint
Why use *Prosper*?

- if you don’t like PowerPoint
 - easy to use, even for \LaTeX\ beginners
Why use Prosper?

- if you don’t like PowerPoint
- easy to use, even for \LaTeX{} beginners
- for scientific presentations: postscript figures, formulas and tables directly taken from papers
Why use \texttt{Prosper}?

- if you don’t like PowerPoint
- easy to use, even for \LaTeX\ beginners
- for scientific presentations: \textit{postscript} figures, formulas and tables directly taken from papers

For example,

\begin{align*}
\nabla \cdot \vec{E} &= \rho \\
\nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B} &= 0 \\
\nabla \times \vec{B} &= +\frac{\partial \vec{E}}{\partial t}
\end{align*}
Why use Prosper?

😊 if you don’t like PowerPoint

- easy to use, even for \LaTeX\ beginners
- for scientific presentations: \textit{postscript} figures, formulas and tables directly taken from papers

For example,

\[
\nabla \cdot \vec{E} = \rho \\
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}
\]

\[
\nabla \cdot \vec{B} = 0 \\
\nabla \times \vec{B} = +\frac{\partial \vec{E}}{\partial t}
\]
Basic Structure

\documentclass[pdf, ...]{prosper}
\title{Some presentation}
...
\begin{document}
\maketitle
...
\begin{slide}[transition]{Title}
 normal text/graphics on slide
\end{slide}
Options of the class

\documentclass[options]{prosper}

- pdf or ps; slideBW or slideColor; colorBG or nocolorBG; final or draft
- Style: frames, azure, autumn, contemporain, darkblue, troispoints, ...

Example:

\documentclass[pdf,contemporain,slideColor,colorBG]{prosper}
Macros in the preamble

\title{}
\subtitle{}
\author{}
\email{}
\institution{}
\slideCaption{}
\Logo(x,y)\{\includegraphics[width=1cm]{logo.eps} \}
\DefaultTransition{}}
The slide environment

\begin{slide}[transition]\{Slide title\}

- **Transitions:** Split, Blinds, Box, Wipe, Dissolve, Glitter, Replace
- **Placing text and figures:**

\begin{minipage}{4cm}
\includegraphics[]
\end{minipage}
\begin{minipage}{5cm}
material for slide
\end{minipage}

\begin{minipage}{5cm}
\begin{itemize}
 \item APEX (MPFR, JC Berkeley)
 \item AMI (Cambridge)
 \item SPT (U. Chicago)
 \item ACT (Princeton, Penn)
 \item PLANCK
\end{itemize}

- SPT: 4000 sq. deg (1.3').
 \(M_{\text{cluster}} > 4 \times 10^{14} M_{\odot}\).
 Expect 20,000 clusters.
- APEX: 250 sq. deg (0.8')
- ACT: 100 sq. deg (1.1')
- PLANCK \(\sim 10,000\) cl. in all sky (5')
\end{minipage}
Step-by-step

\overlays{n}\
{\begin{slide}{...}...\end{slide}}
...
{\end{slide}}

- Macros:

{\begin{itemstep}
{item}...
{\end{itemstep}}

(no replacement)

{\fromSlide{m}{}{}}
{\onlySlide{m}{}{}}
{\untilSlide{m}{}{}}
{\FromSlide{m}}

(replacement)

{\fromSlide*{m}{}{}}
{\onlySlide*{m}{}{}}
{\untilSlide*{m}{}{}}
The compilation process:
The compilation process:

\LaTeX \rightarrow \text{DVI}
The compilation process:

\textsc{LaTeX} \rightarrow \textsc{DVI} \rightarrow \textsc{PostScript} or \textsc{PDF}
The compilation process:

\begin{itemize}
 \item \LaTeX \rightarrow \text{DVI} \rightarrow \text{PostScript or PDF}
 \item \texttt{dvips}
\end{itemize}

Printing slides
The compilation process:

\[\text{\LaTeX} \rightarrow \text{DVI} \rightarrow \text{PostScript or PDF} \]

- dvips
- ps2pdf
- dvi2pdf (Perl script)

Printing slides

On-screen display
Prosper allows to set links and targets within the presentation with the \hyperlink and \hypertarget commands. (E.g. this is a link to the last page).

Embed animations within a presentation. E.g. to embed an MPEG movie, you can include the following code:
\href{run:movie.mpg}{Click here to view the movie}

Easy to convert the PDF presentation to an HTML slideshow (e.g. using the Python script pdf2htmlpres.py).
Prosper at the IAC

- **Prosper:** http://goya/inves/SINFIN/sie_courses.html
- **Local directory:**

 `/usr/pkg/teTeX/teTeX-2.0.2/share/texmf-local/tex/latex/prosper/

- **IAC logos:**

 `logoiac_blue_bg.ps` `logoiac_white_bg.ps`
Useful links

- **Prosper Home Page**
 http://prosper.sourceforge.net/

- **PStricks**
 http://www.pstricks.de/index.phtml

- **Others:**
 - http://wikiproser.bbclone.de/
 - http://amath.colorado.edu/documentation/LaTeX/prosper/

(link to page “Miscellaneous features”)