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ABSTRACT

Aims. One of the most striking features predicted by standard earfegalaxy formation is the presence of anti-correlationthe
matter distribution on large enough scales>( rc). Simple arguments show that the location of the lengthescalmarking the
transition from positive to negative correlations, is taeg for any class of objects as for the full matter distridmuti.e. it is invariant
under biasing. This scale is predicted by models to be attabeisame distance of the scale signaling the baryonic &cassillation

scalerpao.

Methods. We test these predictions in the newest SDSS galaxy sampla®\t is possible to measure correlations~oh00 Mpgh
scales both in the main galaxy (MG) and in the luminous redxya(LRG) volume-limited samples. We determine, by usingé¢h
different estimators, the redshift-space galaxy two-poinetation function.

Results. We find that, in several MG samples, the correlation functimains positive on scales 250 Mp¢h, while it should

be negative beyond. ~ 120 Mpg¢h in the concordance LCDM. In other samples, the correlafimetion becomes negative on
scales< 50 Mpgh. To investigate the origin of thesefidirences, we considered in detail the propagation of ermoith® sample
density into the estimation of the correlation function. @énclude that these are important at large enough sepasadind that
they are responsible for the observeffetiences betweenfiiirent estimators and for the measured sample-to-sampéioas in

the correlation function. We show that in the LRG sample tteescorresponding to,,, cannot be detected because fluctuations
in the density fields are too large in amplitude. Previoussueaments in similar samples have underestimated voleperdient

systematic fects.

Conclusions. We conclude that, in the newest SDSS samples,

the large4sehhvior of the galaxy correlation function iSezted

by intrinsic errors and volume-dependent systemdtieces that make the detection of correlations only an estiroba lower limit
of their amplitude, spatial extension, and statisticabestr\We point out that these results represent an importeitenige to LCDM

models as they largely filer from its predictions.

Key words. Cosmology: observations; large-scale structure of Usi/er

1. Introduction

This former regime can be easily related to the early unévers
correlation function by a simple rescaling of amplitudegegi

Standard models of galaxy formation (i.e., cold, warm antd hpy the linear gravitational growth of small amplitude peltar

dark matter models) predict the two-point correlation tiorc

tions in an expanding universe (Peebles, 1980). The sgade

&(r) of matter density fluctuations in the early universe, a®ythan imprint of the early universe physics. It correspondshi t
can make a simple prediction for that at the present timenen tsize of the Hubble horizon at the time of the equality between
regime of weak density perturbations, where fluctuationshamatter and radiation and it is fixed by the values of standard

been only linearly amplified by gravitational clusteringthe
expanding universe (Peebles, 1980). ThEedénce in the vari-
ous models lying in the values of the characteristic lengéties
and in the particular scale-behavior £&f). In general, this is
characterized by three length scales and thrferént regimes,
(i) on scales smaller tham, whereé&(rg) = 1, matter distribu-
tion is characterized by strong clustering; i) > 1, about
which little is known analytically and which is generallyreo
strained by N-body simulations where it is typically fout,
forr < rg, &rr) ~ r” with y =~ 1.5 (Springel et al., 2005).
(i) The second length scale is such tlkét.) = 0, and it is

cosmological parameters being proportional @hd)~* where
Q is the density parameter afdthe normalized Hubble con-
stant (Peacock, 1999). The third length saalg is located on
scales on the order of, but smaller than,This is the real-space
scale corresponding to the baryon acoustic oscillatiodsJ()B
at the recombination epoch. Its precise location dependken
matter density parameters, baryon abundance and Hubbile con
stant ((Eisenstein and Hu, 1998). (iii) Finally in the thi@hge
of scales, namely for > rc, &(r) is characterized by a nega-
tive power-law behavior, i.e(r) ~ —r~* (Gabrielli et al./ 2002,
2005). Positive and negative correlations are exactlyruaid in

located atrc > ro (Peebles, 1993; Gabrielli etial., 2002). Insych a way thaj(‘)w £(r)d®r = 0. This is a global condition on the

the range of scaley < r < r¢, &(r) is characterized by pos-

itive correlations, which rapidly decay to zero when- re.

system fluctuations, which corresponds that the matterilalist
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tion being super-homogeneous (Gabrielli etal., 2002, 065 The LS estimator is defined as
characterized by a sort of stochastic order and by fluctoatio___  N,(N, - 1) DD(r) _N; - 1DR(r) 1 1
that are depressed with respect to a purely uncorrelatéd- digtLs(r) = Na(Ng — 1) RR() TN RR(r) + 1)

bution of matter (i.e. white noise). This corresponds tdithear

behavior of the matter power spectrum as a function of theewayvhere DD(r), RRr) and DR(r) are the number of data-data,
numberk for k — 0 (named the Harrison-Zeldovich tail), and if@ndom-random and data-random pairs, BpdNg are the num-
characterizes not only the LCDM model but all models of def€r of random and data points (we Use= K - Ng with K = 3
sity fluctuations in the framework of the Friedmann-Rolents @nd we have checked that the results do not significantlyrdépe

Walker metric(Gabrielli et all, 2002, 2005). onK as long as this is larger than unity).
In the new samples provided by the Sloan Digital Sky Survey 1he DP estimator is defined as
-DR1 i N o) iti N, DD(r
Data Release 7 (SDSS-DRT) (Abazajian et al.. 2009), it is pgs—ry _ N O _4 @)

sible to estimate the galaxy correlation function on scatethe Ng — 1 DR(r) ’
order of 100 Mp¢h to possibly determing,, andr.. Some years : .
ago,| Eisenstein et al. (2005) determined [the Landy and $za z{]d the H estll\ImNator canDbs(\:\;::'[;:]) as
(1993) (LS) estimator of the galaxy two-point correlatiomé- £, (r) = = - (3)
tion in a preliminary luminous red galaxy (LRG) sample of the (N =1)(Ng - 1) DRE(r)
SDSS, claiming for an overall agreement with the LCDM pre- |n general, a statistical estimat¥, of the statistical quan-
diction and for a positive detection of the scalg, at about tity X in a finite sampleV, to be a valid one, must satisfy the
110 Mpgh. More recently_Cabré and Gaztafiaga (2008) mefilowing limit condition
sured the same estimator of the correlation function in fRR&L lim Xy = (X)
DR6 sample and Martinez et al. (2009) in the LRG-DR7 samplg.c * ¥ — ’
They both found that the LRG correlation is positive up to 20Qhere in brackets we denote the ensemble average (infirlite vo
Mpc/h and that the shape of the correlation function arawgd |, me limit). A stronger condition is that
is slightly different from the one measured lby Eisenstein et al.
(2005). While they claimed that the measured correlatiowfu (Xv) = (X)
tion was compatible with the LCDM model, they did notdiscusge. that the ensemble average in a finite volume is equal to
the fact that their detection implied that positive corfielas ex- the ensemble average in the infinite volume limit. If this dien
tend to scales larger than the model predictedn addition we  tjon is not satisfied the estimator is said to be biased (Kersc
note that Eisenstein etal. (2005); Cabré and GaztaidiiB2 [1999; Gabrielli et al., 2005). One wants to understand tas bi
Martinez et al.[(2009) did not discussed other estimatm the and the variance of the various estimators and this is possi-
LS one. o ble only for some specific estimators and for distributiorihw

In the present paper, we show that our results coincide vefiynple correlation properties (e.g. Poisson). THea of bias,
finely with the ones of the above mentioned papers for what cqre. finite volume or size féects, can be studied through the
cern the amplitude, shape and statistical error bars indbe of analysis of artificial simulations with known propertiesvi
the LS estimator in the LRG-DR7 sample. However we measUWger the three estimators defined above are all biased (ersc
that in the SDSS-DR7 main galaxy (MG) sample the two-poin999{Kerscher et al., 2000; Sylos Labini and VasilVev, 2008
correlation function (LS estimator) remains positive agjéasep- is worth noticing that Kerschel (1999) showed that, in a real
arations, i.e. for > 250 Mpgh, showing a clear systematicgalaxy sample, the threeftéirent estimators defined above use
volume-dependentbehavior and a remarkable disagreentént Wifferent finite size corrections yielding tofi#irent results on
the LCDM prediction. In addition, we find that there is a difigrge enough scales, for small value of the correlation #ot,

ference between the LS and the Davis and Peebles|(1983) (Rlle all of them agree on smaller scales, where the amplitud
estimator of the two-point correlation function in redslsipace. of the correlation was large enough.

Finally we f_ind thalbc_)th estimators significantly vary _in fier- It was shown[(Landy and Szaldy, 1993) that the LS estima-
ent sky regions. We interpret these results by studying the fl tor has the minimal variance for a Poisson distribution, the
tuations in the sample density estimation. variance decays agNl instead as 1 VN as for the DP estimator.

The paper is organized as follows. We first define in Sectiis fact, however, does not mean that its variance will be an
the estimators of the correlation function and a simplerdéte more controllable for a wider class of distributions with r@o
nation of its statistical errors that we use in the data ama.ly Comp]ex correlation properties than Poisson’s (Gabmuﬂ,
Sect.[8 is devoted to the description of the samples sefecti®nos). Indeed, there is no formal proof that the DP is less-acc
while in Secf.#4 we present our main results. The discussion@te than the LS for a generally correlated point distritnutiven
the behaviors we have found and their interpretation isgmmesl  though this conclusion has been reached by, e.g., Kersthér e
in Sec(.5. The behavior of the two-point correlation fuootpre- (2000) examining some specific properties of estimators in
dicted by standard models of galaxy formation and the compaxbody simulations. They concluded also that the H estimmiator
son with the results obtained are discussed in Sect.6.IfFivel equivalent to the LS one. [n Sylos Labini and Vasilyev (2008)
draw our main conclusions in Ségt.7. by studying finite volumefects in the estimators, it was shown
that the two estimators LS and the H are indeed indistinguish
able, but that they are almost equivalent to the DP when the un
derlying distribution is positively correlated.

In what follows we determine the two-point correlation peop Among the various ways to compute statistical errors
ties by using the LS, DP and the Hamilton (H) (Hamilton, 1993Bylos Labini and Vasilyev, 2008) we use the jack-knife (8&)
estimators. These estimators may have a number of systemttnate whose variance is (Scranton €etlal., 2002)

2. Pairwise estimators

biases when correlations are long range as we discuss ifSect N DR (1) )
Firstly, it is interesting to discuss their properties amthigider 2 () — _( i (1) — £ (1) ) A
their determinations. 73acl) £ DR(r) fis(n) ~éislr) @
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where the index s used to signify that the value of the correla- VL sample | Rnin | Rvax | Mmin | Mmax | N
tion function is computed each time in all thesub-samples of VL1 50 | 200 | -18.9 | -21.1 | 72037

! VL2 | 150 | 500 | -21.1 | -22.4 | 69999
a given samples but one (tH9). VL3 | 200 | 600 | -21.5 | -22.7 | 42357

VL4 70 | 450 | -20.8 | -21.8 | 93821
LRG 570 | 1035 | -20.5 | -22.5 | 53066

3. The samples

We have construc_:ted several sub-samples of the main-gala¥ple 1. Properties of the SDSS-DR7 VL sampl&iin, Rmax (in
(MG) and the luminous-red-galaxy (LRG) samples of the spegtpc/h) are the metric distance limit#fmin, Mmax the absolute

troscopic catalog SDSS-DR?7. Concerning the latter we hagggnitude limits in the filter; N is the number of galaxies.
constrained the flags indicating the type of object to sadabt

the galaxies from the MG sample. We then consider galaxies
in the redshift range 18 < z < 0.3 with redshift confidence R T T T T T T T
Zeont > 0.35 and with flags indicating no significant redshiftde .
termination errors. In addition we apply the apparent miagiei
filtering conditionr < 17.77 (Strauss et al., 2002).

The angular region we consider is limited, in the SDSS it
ternal angular coordinates, by83.5° < n < 36.0° and—-48.0° <
A < 515° the resulting solid angle iQ = 1.85 steradians. We
do not use corrections for the redshift completeness makor = |
fiber collision dfects. Fiber collisions in general do not preser* 10
a problem for measurements of large scale galaxy corraktic
(Strauss et al., 2002). Completeness varies most near trentu
survey edges which are excluded in our samples. The comple 10
ness mask takes into account that the fraction of obsenias-ga
ies is not the same in all the fields, because of both fibersomtii
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effects and small variation in limiting magnitude. One can, ur g% 1 r(Mpc/h) 1 é
der certain assumption, take into account the completenask B T T F
information in the statistical analysis. Otherwise it ispible to r(Mpc/h)

make tests by varying the limits in apparent magnitude amtist
the stability of the results obtained. We have applied thédad ) o
possibility and we did not find sensible variations in the meé&i9. 1. Correlation function in the VL1 sample: both the LS and
sured statistical properties when< 17.5 (Sylos Labini et al., the DP estimators are reported. The solid line gives priedicf
2009d). This conclusion is confirmed by the fact that our tesuthe LCDM with Qmh* = 0.12 (from Eisenstein et al. (2005)) lin-
for the LRG sample agree with those_of Eisenstein et al. (poosarly rescaled, according to the simplest biasing scherais€x
Cabré and Gaztanada (2008); Martinez et al. (2009) anthéo 1984), to fit the amplitude on 10 Mgt In the insert panel we
MG sample with those &f Zehavi etldl. (2005a,b), who have exhow the same behavior but in a log-linear scale.
plicitly taken into account the completeness mask of theesur
in their analysis. As noticed hy Cabré and Gaztafiaga (P(b@8
completeness mask could be the main source of systematicoc?\fl-i
fects on small scale only, while we are interested on theetarr
tion function on relatively large separations.
To construct volume-limited (VL) samples (see Tab. 1)
computed the metric distances using the standard cosmologi
cal parameters, i.eQy = 0.3 andQ, = 0.7 with Hp = 100h 4. Results
km/se¢Mpc. We computed absolute magnitudes using Petrosian ) ) .
apparent magnitudes in thdilter corrected for Galactic absorp-We_find, in agreement with_Zehavietal. (2002, _2005a);
tion. Eisenstein et al! (2005) in previous data releases of theSSDS
We checked that the main results in the MG sample we gt@@t the redshift-space correlation function iffelient samples
do not depend on K-corrections gndevolutionary corrections Shows a dierent amplitude but similar shape on small scales
as those used by Blanton et &l. (2003). In this paper we u&€e Fig&llid). This is usually ascribed to the (physidégoeof
standard K-correction from the VAGC ddl4see discussion in selection, that brighter galaxies exhibit a larger clusteampli-
Sylos Labini et al.[(2009d) for more details). tude (Zehavi et al., 2002, 200%a; Norberg et al., 2002). Hewe

Concerning the LRG we have selected all the objects tHAiS is not the only change: the larger the correlation fiamct
have classification “galaxy” and which belong to the “Cut ramplitude the more extended is the range of scales where ther
subset of the Galaxy Red objects with the same redshifttyuafre detectable (i.e signal larger than JK) positive coticela.
criteria as for main galaxies. As this is only roughly VL samlndeed, in the MG samples the transition scale from posttve
ple we have applied cuts in absolute magnitidiend distance negative correlations occurs at a scale that grows rougtgya- -

R to obtain a rectangular area in thé — R diagram. In ad- Portion to the sample size and in the deepest samples this is |
dition because evolutionaryfects are small for LRG galaxiescated on rather larger scales, .e: 250 Mpgh. However in the
(Eisenstein et all, 2005) we have not applied further ctioes VL1 sample we findc ~ 50 Mpgh, i.e. less than the half of the
to these data. Given that we have selected a truly VL samgle, WCDM prediction.

did not apply a further redshift dependent weighting to tatad ~ To show that finite-volumefeects are important on large sep-
arations, we consider a single sample (VL4) and we cut it at

1 http://sdss.physics.nyu.edu/vagc/ different scaleRnax in addition we consider an angular cut of

The sub-samples used to measure the JK errors are made by
ding the survey angular region we considered into 30 sub
fields, each of area 200 ded. In this way there are some thou-
W%ands galaxies in each sub-sample.
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Fig. 2. The same of Figl1 but for the VL2 sample.
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Fig. 3. The same of Figl1 but for the VL3 sample.
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Fig. 5. Correlation function in the whole sample VL4 and in a
sub-sample of it (VL4c) limited aRnax = 250 Mpgh. Jack-
knife errors are shown in both cases.
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Fig.6. Correlation function measured through the LS estima-
tor (with jack-knife errors) in the LRG sub-sample (R1) whic
is limited by -335° < < 36.0° and-480° < 1 < 0°, i.e.
with solid angleQ = 0.9 steradians. The solid line is the LCDM
prediction.

the LRG sample for which the depth is fixed but the volume is
lowered. In the latter case the whole angular regior @000
ded is cut into two non-overlapping sky region, each of area
~ 3000 ded, i.e only~ 20% smaller than the sample considered
by |[Eisenstein et all (2005). As one may notice from Eig$.5-7,
there is a clear volume dependence of the two-point coioelat
function on large scales. In particular, in the R1 sub-sartipgre

is an evident dference between the data and the LCDM predic-

H tion. In addition, we note that almost in all cases the DP aid L

estimator on large enough scales showfiedence which can be
larger than statistical error bars.

It is worth noticing that our result for the LS estimator oéth
correlation function in the LRG sample finely agrees with the
determination of Martinez et al. (2009), although thesthens
have used a slightly @fierent technique to take into account the
survey completeness mask, as we commented above (dee Fig.8)
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Fig.7. The same of Figl6 but for the R2 angular region, whicfytion in the diferent MG and LRG samples.
is limited by —-335° < 5 < 360°and 0 < A < 48, i.e. with
solid angleQ = 0.9 steradians.

150 Mpgh. In this respect one may ask whether statistical errors
computed in this way are meaningful.

Martinez E - ,
ngé ] In addition we note thet Martinez et al. (2009) also found
LCDM 71 that the correlation function becomes negative on scaleiseof

order 50 Mp¢h in a 2dFGRS sample, without however com-
| menting on this fact. Actually they even claimed thgg is de-
tectable when the correlation function is negative, withdis-
cussing that this is not what one expects in the context of the
LCDM model where the zero point of the correlation function
must be a single scale for any type of objects (see below).
Finally we find that, as discussed in Sect.2, the LS and the H
estimators of the correlation function are almost indigtish-
able: this is shown in Figl9 where we plot the behavior of the r
tio &.s(r)/én(r) as a function of separation. This remains smaller
than~ 5% on all the relevant scales.
1 Finally to check the number of poinké used in the random
r(Mpc/h) sample do not alter the estimation we have incredbeg to ten
times the number oy without detecting any sensible change.
. S ; . We conclude that the fierence between the DP and LS estima-
Fig.8. Determination of the correlation function for the LRGEor lies in the bias (finite-volumefkect) intrinsic to the dferent

sample with the LS estimator (LRG), compared with th h . ke i bound e
Eisenstein et al.| (2005) (EO05) and the Martinez etlal. (}ZOO‘gaySt ese estimators take into account boundary consition

(Martinez) determinations. The solid line is the LCDM predi
tion.
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5. Fluctuations and volume-dependent systematic
effects

The LS estimator for the LRG sample is also very similar to
the determination made by Eisenstein étlal. (2005), altholug In theoretical models, the matter density field is uniforniarge
signal is larger then the statistical error bars and pasitip to  scales and the average mass dersitys provided by an average
200 Mpgh, as it was found also by Martinez et al. (2009) in thever an ensemble of realizations of a given stochastic gsoce
same sample we considered. A similar trend was also seednr2 finite sample of volum&/, the average densify can be
the analysis by Cabré and Gaztafiaga (2008). In additionesu €stimated in some way. In the limit in which the sample volume
sult for the MG sample nicely agree with the determination ¢$ infinite and in the process is ergodic (Gabrielli et/al.020
Zehavi et al. [(2005b), although they did limit their anagysd then limy_. i = (n) because in this limit the relative variance
smaller scales than the ones considered in our analysis. goes to zero if the distribution is uniform on large scaless, i

We note that Eisenstein et al. (2005) stated that the MG sam-
ple does not have an enough large volume to measure theazorrel )
tion function on 100 Mp#h scales, without giving a clear quan-\}'Lnoo o?(V) = JLDO
titative argument of why statistical or systematic errdrewdd N(V)
prevent one to measure the correlation function on thodesca
Indeed, we find that the signal to noise ratio, when JK errtir esvhereN(V) is the mass in a volum¥. In a finite volumer2(V)
mations are used, is larger than unity even on scales ldrgar tis finite and therefore in any finite volunte+ (n). In general

m AN(V)22 =0 (5)
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for a uniform stochastic point process, in the ensembleagyser  We show now that the ffierent values the sample density

sense the relative mass variance can be written as may result in a dferent measurement of the large scales behav-
1 1 ior of the correlation function. To this aim, let us assumat th

a?(V) = = f fg(rl —1)Prid¥r + —— (6) thereis a small dierence between the value of the sample den-
Ve v dv (N(V)) sity used by the estimator 1 and the estimator 2, so that we can

whereé(r) is the ensemble average two-point correlation fundrite

tion. In the r.h.s. of EQIS there is the sum of the contnl:_nutlon—2 = (1 +6) (9)

to the variance due to correlation and due to Poisson ndise, t

former being always present in a point distribution. with 6 < 1. Le us also suppose that the two estimators measure

Thus in afinite sampleﬂdetermination of the average dgfg exactly same conditional densﬂw. This is a simplifying
sity N has an intrinsic erros(V). Given that the two-point cor- but reasonable assumption as the conditional density inged
relation determines the amplitude of correlations wittpee$ to - over many points placed infiiérent parts of the sample volume.
the sample density, it is natural to ask which is the erraoint |n these conditions we may write that
duced in the estimation of the correlation function by thearn _
tainty on the value of the sample density. A second questioni—  ny(r)

which kind of statistical estimation of the correlation étion  $1.2(F) = — -1 (10)
errors in a finite sample is representative of the errorsdadu L2
by the average density uncertainty. and thus from Eqsl[7}9 we get
5.1. Fluctuations i inati ity &= a0 &)
.1. Fluctuations in the determination of the sample density = &(r) = Tas 1~ &(r)-6, (12)
The two-point correlation function is defined as which makes explicit that a fierent determination of the sample
(n(r)n(0)) (np(r)) d_ensity re_sults in a variation of the estimated two-pointeia-
&) = w2 T Tm (7)  tion function. L
As an illustrative example, we can takeé&aér) the LS esti-
where mator for the LRG sample. We find that, i®& —0.006,&,(r) in
(n(r)n(0)) Eq[11 almost perfectly agrees with the DP estimator in th_@a_&sa
np(r)) = ——— sample (see Fig.10). It is thus clear than a small unceyt&int
n the value of the sample average (in this case 0.6 %) facta
is the conditional density. Because of the definition ifEgry the large scale behavior of the correlation function in tege
estimator of(r) can be written as of scales and of amplitudes of interest, i.e. around 100/Mjpc
the LRG sample. Therefore, we have to determine what is the
—— (D) error on the estimation of the sample density and then we have
&r)=—-1 (8) to clarify how this changes the large scale behavior of the co
s relation functionls the above estimation of 0.6% representative

wheren,(r) is the sample estimation of the conditional densit§f thse_ trule uncegtalﬂty on tt,Te Iqrger]siallle average d(ejnsny ?
andng is the sample estimation of density. Note that, in general, |r;]1p y stated, the %ro im Isthefo oww;g.l;n or3 ertohmea-
to measure the conditional density, one performs an avensgre SU'€ the BAO we need to have an error of about®lgh the

all points in the samplé (Gabrielli etll., 2005). On the otfend €Stimator of the correlation function. Indeed, for the LRi5e,
the estimation of the sample average does not involve the a e correlation function on 100 Mpithas an amplitude of about

e , X
age operation. For instance one can simply determine thplea 0= while the feature corresponding to the BAO (a slight local

density to ba; = N whereV is the sample volume ard is the créase followed by a decrease) corresponds to a localticari
number of objsectglin it. of about 102 in the correlation function amplitude.

In addition it is worth noticing that the pair-wise estimato ~ BY €IT0rs propagation, we find from E¢.8 that
introduced in Sedil2, necessarily use a similar strategjiy ar- — —
der to the measure the average of the sample density one wi ~ dnp(r) + np_(r)E ) (12)
need many samples of sixé Thus, the determination of the Ns Ns
two-point correlation function requires the estimatioraafav-

; i We neglect again the statistical error on the determinatidhe
erage quantity and of a non-average quantity. The former

introduce volume-dependent systematiieets in a non-trivial Ce&dmonql density on scales sma_ller than the samp_leth_ee.
way firsttermin the r.h.s. of EQ.12. As discussed above, this@app
: _ R _ mation is reasonable in view of the fact that the conditialead-
Suppose that a certain estimago(r) of the two-point cor- ity is determined by making an average over many pointsa The

relation function uses the sample estimatmnwhile another by using again EfJ8 we can rewrite the previous equation as
estimatoré,(r) usesny: the diference between; andn; is not

due to the fact that the samples arffetient, rather that the dif- 5£(r) ~ (£(r) + 1) ~ & (13)
ferent estimators use féérent boundary conditions to measure L

the two-point correlation function, i.e.fiierent ways of normal- where we used tha{(r) < 1 as this is the regime in which we
izing the data-data pairs to the data-random and randodsran are interested in. From EQJ13, it follows that the error o@ th
pairs. Thus they are subject to dtdrent bias/ (Kerscher, 1999).correlation function estimation is of the same order of tirere
Alternatively one can think to measure the same estimatbr b the estimation of the sample density. Therefore the duret
into two different samples of same geometry and volume, whether we really know the sample density with an error of the
which the sample density takes a slightlyfeient value. order of 103,
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Fig.10. By taking the LS estimator in the LRG sample fafr)  Fig. 11. The typical fluctuatiors in the LRG sample average
in Eq[I] we find that fos = —0.006 the quantity’(r) (labeled density is about 8% for about any valuefin the range 430
as LSc) almost perfectly agrees with the DP estimator in thgnd it is much larger than Poisson noise.

same sample.

=—a VL1
- VL2 _
*-% VL3

The typical fluctuation on the density estimation in a give
sample, on scales of the order of the sample siz&, e prob-
lem is to constrai from the data. As mentioned above it is no
possible to make an average over many samples of volirae 01
we have a single one, and thus we can determine the fluctuat
only inside the sample itself by considering several subpas
of it. 0.08

We have estimatedr on the relevant scales as follows. We .
divide the sample intdl independent (non-overlapping) angula I g
fields and then we determine the number of galaxies in the e¢ o0.06 -

field. We then compute the averaljeand the varianc&? and
thus the standard deviation as ood

V32 L 1 | 1 | 1 | 1 | 1 |

o=—. (14) 20 25 30
N N

As there is an arbitrariness in the choice of the number addiel

N we let it to vary between a few, for which we have more thakig. 12. The same of Fig.11 but for the VL1, VL2 and VL3 case.
10* objects in each field, to some tens, to have a least several

hundreds of galaxies in each field.

From FiglT1 we may note that in the LRG sample, the typicHle order ofc- up to 250 Mpgh. We stress however that one
fluctuation is about 8% for about any valuefand that this is should also care about whether the property of self-avegagi
much larger than Poisson noise, i.e. almost a factor 10@fargatisfied in these samples, and thus whether the deteromnati
than the error needed to measure the correlation functitmavi Of average quantities gives a meaningful estimation ofristc
precision of the order of 18! properties|(Sylos Labini et al., 2009c,d).

Note that this value of the typical fluctuation is in agree- While the above argument about error propagation strictly
ment with that obtained in a smaller LRG samplé by Hogg et @&Pplies when we determine the correlation function by abnsi
(2004). For the MG samples we find thathas about the sameering Ed.8, we show in what follows that the above estimation
amplitude as for the LRG case (see Fig.12). Thus given tHlds also in the case of the DP and LS estimators. To show this
o < 0.1 we conclude that we can get in these samples a sigfus how compute statistical error bars iffeiient way than by
tistically significant estimation of the correlation fuiwst only the JK method.
for [£(r)] Z 16£(r)| ~ o ~ 0.1 and thus any claim about smaller
amplitude is biased by overall volume-dependent systenséti
fects. This implies that, for the LRG sample, our estimai®on
statistically significant for < 50 Mpgh. To measure correla- The errors on the correlation function can be determinedaiit v
tions of smaller amplitude, and thus on larger scales, wel nemus manners and the problem is to understand, in the case of th
to have samples in which the typical fluctuation of the averagctual distribution, which methods gives the most reliadster
density is, at least, a factor ten smaller than the presemt on  estimation. To this aim, let us consider in more detail theco

Note that for the case of MG samples, and specifically f@utation of JK errors: in practice one takes almost fixed #me-s
VL2 and VL3, the amplitude of the correlation functions is ople density and computes the typical variation with respeit

0.12—

[$2)
=
o
iy
(S

5.2. Statistical errors
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Indeed, we remind that each of tiNesub-fields used to in the i ]
JK estimation is equal the full sample without a small sulifie - - FtF(10) 1
of angular area equal to/Nl of the full sample area. Therefore - E;Eggg 1
the diterent sub-fields are strongly overlapping: in the case e« Jackknife
which large scale correlations are not negligible this roétin-
derestimates the errors in the correlation function edtoma

We find that in the LRG sample the variation of the samp
density in theN = 30 sub-fields used to compute the JK error=
is smaller, i.ec ~ 5- 1072 than what is estimated by computing
the variance imon-overlappingub-fields. This result does not  o.01

Es

show a particular dependence on the number of sub-fields u 3 RV
as long aN > 10. C ]

Field-to-field errors can quantify, volume-dependenteyst - y
atic dfects due to large-scale variation of the sample densi - W\H
They can be computed by dividing the sample iftNonon- | “
overlapping sub-fields. The correlation function can beé- es 10 100
mated by r (Mpc/h)

1 N
&) = NZgi(r) (15) Fig.13. Jack-knife errors, and field-to-field errors computed
i=1 with different number of fields N10,20,30 in the LRG sample.
and then the variance is The solid line corresponds to the full-sample determimatd
N G- ER the LS estimator.
I

oEe(r) = .21: N_1 - (16)

In Fig[I3 we show the behavior of the errors, in the LR
sample, computed by Eq.4 and [E4.16 and considering 10,
and 30 fields. One may note that (i) the field-to-field error ig;

larger than the signal far 2 50 Mpgh, i.e. for scales larger the i, 't nction is non zero at large scales. This introducestw

ampli.tude of .the estimated correlation functior(s) ~ . (i) known bias, i.e. a volume-dependent systemdffiects. Let us
The field-to-field error is larger than the JK error on all ssal discuss this’furthen‘mct

by about five times. Note that the JK errors are similar toe¢hos : . .

; , 4 = o) ' : Most of the literature on the correlation function mea-
derived by of Cabré and Gazlafiaga (2008). The f!eld—td—éel surements has focused on the determination of the statisti-
rors are much larger, and they could be over-estimates bece%laI errors [(Zehavi et Al 2002 2005a: Norbera etal  2002:
the fields used are smaller than the full sample. To checkivehnet . : S '

I e o e canvay e umber o S o e REETECIL L. 005 NoroerG o 2000 whe e,
timate the field-to-field fluctuations as we did, for instaniwe

compute the typical rms fluctuation on the average density (Stroduced by volume-dependent systemaliees. These depend

Figs[I1EIR). Clearly by reducing the number of fiekisne has on the_prec_:lse t_ype of estimator used, b_ut théga any estima-
less determinations, while increasiNgne is finally dominated ©¢(1; V), in a finite sample of volum¥, in some ways at large
by shot noise. FoN in the range [10,30] we do not notice anye"0ugh scales (Sylos Labini and Vasilyev. 2008). ,
clear decrease in the field-to-field errors. Our conclusishere- _FOr instance, an important volume-dependent systematic ef
fore that the JK error is not the complete error but only the-sa féct is related to the so-called integral constraint (Pegl980)
pling error while the field-to-field fluctuations include thessi- and can be understood as follows. The estimé(orV) mea-
ble fluctuations due to the uncertainty on the sample degsity sures amplitude and shape of conditional correlations abrm
timation and it and should be larger or equal than JK errons. Azed to the estimation of the sample mean instead to the™true
additional problem we consider in the next section, is wieth(€nsemble or infinite volume limit average) average density
the statistical errors measured by considering non-oppity  (Sylos Labini and Vasilyev, 2008). As long as the “true” edar
fields are able to take into account the whole uncertaintyhen ttion function is diferent from zero (e.g. in case of LCDM on alll
sample average, i.e. they can take into account the biaseof §i§ales) any estimation of the average density in a finite Eamp
estimators. differs from the “true” value. This situation introduces a syste
Note that the behavior of the correlation function in the M@tic distortion ofé(r; V) with respect ta¢(r) which, depending
VL2 and VL3 samples on large enough scales, i.es 200 on the correlation properties of the underlying distribntiis
Mpc/h, is the same when considering both JK and field-to-fieldanifested in (i) an overall fierence in amplitude and (ii) a
errors, showing thus that there are positive correlationsoales distortion of the shape far < VY3 (Sylos Labini and Vasilyev,
larger than the cutfd on ro = 120 Mpgh predicted by the 2008).
LCDM model without a statistical robust evidence of thg, In order words, only if the zero point of the correlation func
scale on~ 110 Mpgh. tion is due to the boundary condition corresponding to the in
tegral constraint, then this will be fiérent for diferent sample
sizes. If the zero-point is real, as it should be in a LCDM mpde
then it should not change from the sample to sample.
The simple estimation of field-to-field errors allows one ter The definition of the range of scale in which this former ef-
come the problem related to the JK method, in which the infiect occurs, depends on the precise estimator used. Fanoest
plicit assumption is that correlations on the scale of thepda in the case of the full-shell (FS) estimator (Gabrielli €t/2005;

e into account the full errors on the correlation functés-
ation. This is because the sample density is systenfigtica
fferent from the ensemble average density when the correla-

%}; negligible. However the field-to-field method is not alole

5.3. Large scale volume-dependent systematic effects
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Sylos Labini and VasilyeVv, 2008) and for a spherical sample v sampling of a Gaussian random field (Kaiser, 1984). In the for
ume, our ignorance of the “true” average density value idiexp mer case one may derive analytically that the “biased” hotp
itly present in the condition thaﬁ/ E(r,V)(r)d® = 0, where the cor(elation function_ isllinearly amplified by thr_eshold spi'rng
integral is performed over the whole sample volwhélote that (Kaiser,11984). This is found to occur also in the non-linear
this condition holds for any/ and it forces the estimator to be-"égime but under dierent conditions, as shown by numerical N-
come negative even if the “true(r) is always positive inside Pody simulations (Springel etial., 2005; Croton et al., Y00
the given sample. Theffect of this boundary condition is theffect of biasing is to linearly amplify the correlation furmti
following: as long as the “true” correlation function is toee, While the simple threshold sampling of a Gaussian randorm fiel
by enlarging the volume size the change of sign occurs ae"ar??redmts a strongly scale dependent amplification of theetar
and larger scale$ (Sylos Labini and Vasilyev, 2008). Thisoe tion function in the non-linear regime (Gabrielli et al. 959.
may very well explain the behavior found in the MG VL samples _ Therefore the prediction of the non-linearity scejdor the
discussed above, in which we noticed that the transitiotesc#!l matter distribution (which, in current models, is ~ 8
changes from ~ 50 Mpgh for the smallest sample to more thadVlPc/h) gives only an approximate estimate for that of galaxies of
250 Mpgh for the deepest sample we considered. Note thatdferent luminosity. Indeed this scale has been found to $jight
the “true” correlation function is negative, then the diitm on Vary in N-body simulations (Springel et/al., 2005). On thieeot
large scales can be rather important (Sylos Labini and kil hand the scale; is not dfected by biasing for the simple reason
2008). that it is located, in current models, on aboyt~ 120 Mpgh
While for the FS estimator one can analytically calculate tyvhere fluctuations have low amplitude and thus where bosk bia
scale at which the systematic departure from the “true” sloap N9 @nd gravitational clustering give rise to a linear arfigtion
curs, for more complex estimators based on pair-countike, | ©f the correlation function. Hence, given that for r¢ there are
the LS one, it is possible to understand only through nuraérid!0t Positive correlations in the whole matter density fiéise
simulations the ways in which this boundary conditidfeats Will not be present in the galaxy distribution as they carimt
the measured correlations. This is the complication to pside 9€nerated by a biasing mechanism. Thus the length sgase
ered having the advantage that these estimators can measurdnvariant with respect to biasing, i.. it must be the sante fo
relations on scales larger than those sampled by the FSaestigfly class of objects as for the whole matter density fields It i
tor (Sylos Labini and VasilyéV, 2008). For pair-countingjres.- then a fundamental scale to be measured in the observed/galax
tors it has been numerically shown (Sylos Labini and Vasilyedistribution to verify the class of models characterizeditiy
2008) that, when fluctuations in the sample density are smifrrison-Zeldovich tail of the matter power spectrum. Fina
enoughy o« V¥/3; the pre-factor of this proportionality dependéhe third length scale in current models is the BAO scalegtied
on the type of estimator and on the sample geometry. Howev&bao S fe, and it is weakly &ected by gravitational evolution
we note that large scale fluctuations may alter this sysferbet and biasing (Eisenstein and Hu, 1998). L
havior as a function of the sample volume in a non trivial way 1hat the scalesa, andre are invariant under biasing is

(see e.gl, Sylos Labini etlal. (20095)5,c,d)). hown by the analysis of the N-body simulations providedigy t

Note that the simple computation of how the error in the aj1°izon project (Kim et al.. 2009) where it is found that tees

; : - the same for the whole matter distribution and for the sub
erage density propagates into the error on the correlatioo-f are . . e
tion does not take explicitly into account of the situation jsample of particles corresponding to the LRG (see theiblig.
which the sample density itself can be a varying function of
the sample size (the interested reader to (Sylos _La_bini,et . Conclusions
2009¢,d.h,a) for a more complete discussion of this impmbrta . .
point). Indeed, as mentioned above, the estimated sample i&the newest SDSS samples it is possible to measure the corre
erage converges to the asymptotic average density withea r@tion function on~ 100 Mpgh scales both in the Main Galaxy
determined from the decaying of the two-point correlationd= (MG) and in the Luminous Red Galaxy (LRG) samples. We
tion. When correlations are strong, there can be an importdReasured, in the former case, positive correlations extgnp
finite-volume dependence of the sample density, resulting i to a factor two beyond the scalg~ 120 Mpgh, at which in the

similar finite-size &ects of the two-point correlation functionLCDM model&(r) should cross zero being negative on larger
(Sylos Labini and VasilyéV, 2008). scales. However in nearby samples we measured that positive

correlations are detectable only upt&®0 Mpgh. Therefore we
concluded that in these samples The correlation functiowsh
6. Theoretical implications a rather diferent behavior from the LCDM model prediction and
that there is no statistical significant evidence for théescarre-
To theoretically interpret these results it is necessatgike into  sponding to the baryonic acoustic oscillations (BAO). Muwer
account an important complication which changes the predige found that the estimated two-point correlation functiodif-
tions of standard models described in the introductioneéud ferent MG VL samples shows a clear dependence on the sample
these refer to the whole matter density field (dark and lumnéio volume. We concluded that the overall errors in the estiomati
while we observe only a part of it in the form of luminous matef the correlation function cannot be simply evaluated by th
ter (i.e. galaxies). The relation between galaxy and dark maomputation of statistical error bars (e.g. JK) but they caly
ter distributions is usually formulated in terms of biase thtter be studied by making systematic tests in samples witlerdint
represent a certain (physical) sampling of the former. &lage volumes.
two different relevant regimes. At non-linear scales, where the In addition, we have shown that, in the LRG sample, the
distribution has strong clustering characterized by nongsian uncertainty on the sample density estimation does not atow
fluctuations, this relation can be studied only through niimemeasure the correlation function on scales of the ordertd0
cal models|(Springel et al., 2005; Croton et al., 2006).dadt Mpc/h. Rather it puts a upper limit to the estimation of correla-
on scales where perturbations are small and clusteringtigein tions at about 50 Mpgh. More specifically the fluctuation on
linear regime, there is a simple picture based on the thtéshthe estimation of the sample density for the LRG sample ibef t
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order of 8%. This is, as we have discussed, of the same ordegabrielli, A., Sylos Labini, Durrer, R 2000, Ap.J., 531, L1
the errors in the correlation function. We have pointed batin  Gabrielli, A., Joyce, M., Sylos Labini, F., 2002, Phys. R&65, 083523
order to measure the small bump in the correlation funct®n A3abrielli, A., Sylos Labini, F., Joyce, M., Pietronero, 2005, Statistical Physics
iated with the BAO scale, one would need samples in whi Qfo-r Casmic Stiuctire¢Springer Verlag, Beriin)
sociated wit ale, Idt | pie Amilton, A. J.'S., 1993, Astrophys.J., 417, 19
the fluctuation on the estimated density is more ten timegitowHogg D.W., et al., 2005, ApJ, 624, 54
than the value found in the LRG-DR7 sample. Kerscher, M., 1999, A&A, 343, 333

For this reason we concluded that in the LRG sample thé?@_SChe'\ri N1|§ §ja£“?"2'g4si§ay' A.S., 2000, Astrophyss3, 13
is no statistical evidence for the BAO and that previous meg2ser ' 990 AP 255, L3 .

: : ] - ~ . m, J., Park, C., Gott, J.R., Dubinski, J. 2088Xiv0812.1392
sure[nents (Eisenstein et al., 2005; (_Zabre and Gaztaﬂagﬁ,_ Landy, S. D., Szalay, A. 1993, ApJ, 412, 64
Martinez et al.l, 2009) have underestimated the error bpatfsei  Martinez, V.J., et al., 2009, ApJ, 696, L93
estimation of the correlation function and neglected thespo Norberg, P., etal., 2002, MNRAS, 332, 827
ble efect of the bias in the estimator. This is due to the fact thﬂ?rberg' P., Baugh, C.M., Gaztafiaga E., Croton, D.J, ZUDRAS, 396, 19
hev have measured statistical errors by means of the J eth;eaCOCk' J.A., 199@osmological Physic€Cambridge Un|ver3|_ty Pres_s)
t e_y ' y c . - Kort eebles, P. J. E., 198the Large-Scale Structure of the UnivergBrinceton
This computes the sample variance by consideriffgidint sam-  University Press)
ples which are strongly overlapping. If large scale cotiefes Peebles, P. J. E., 19%inciples of physical cosmolog{Princeton University
are not negligible, this method underestimates the errotise E’Igzsesl)et Al 20095Xiv: 0962, 4680
. . - . TA1V: .
correlation function. We have shown that a more reliable w ranton, E., et al., 2002, Ap.J.. 579, 48
to compute statistical error bars is given by the simplen&sti gpringel, v, et al., 2005, Nature, 435, 629
tion of field-to-field fluctuations. However, we have pointhdt Strauss, M.A,, et al., 2002, AJ, 124, 1810
even this method is not able to properly take into accountadve SY:OS taﬁ!”!’ E Cmf?lndol?\i I[ %ggg' ﬁgﬁ-' :7(3;3'3le1
_ H H ’ H ylos Labini, F., Vasilyev, N.L., , y ,

volume-dependentiects, i.e. the estimator's bias, related to OUff o i “F \adivey, N.L. Baryshev, Yu.V., 2009, iiphys.Lett., 85,
ignorance of the ensemble average density. 20002

Determinations of correlations through the measurgylos Labini, F., Vasilyev, N.L., Baryshev, Yu.V., 2009b%A, 496, 7
ments of the galaxy power spectrum_(Cole etal., 2005ylos Labini, F., Vasilyev, N.L., Baryshev, Yu.V,, Pietso, L., 2009c,
are dfected by similar volume-dependent systematiteats IEUTPE}?'-FG“\-/' 8?' 490'81L Barvshev. YUV, 20094 oriat
(Sylos Labini and Amenddla, 1996). In addition one must tal%ﬁjviﬁ‘ ol 2002, Ao BT drg o T pre
= / . . ey " , ApJ, 571, 172
into account that threshold sampling of a Gaussian flds zehayi, 1., et al., 2005, ApJ, 630, 1
change the shape of power spectrum on large enough scatesavi, I., et al., 2005, ApJ, 621, 22
i.e. on small enough wave-numbers (Durrer etlal., 2003). A
similar situation should occur in the case of the halo models
(Gabrielli et al.| 2005).

This situation represents an important challenge for mod-
els, especially in view of the fact that galaxy distributidoes
not present the negative correlations predicted by models u
to scales larger thar 250 Mpgh. Our conclusion is that,
in view of the finite-volume fects, the estimation of correla-
tions presented here must be intended as a lower limit to the
real correlations characterizing the large scale didfidbuof
galaxies. Future surveys, like the extended SDSS Il ptojec
(Schlegel et all, 2009), may allow us to study the behavithef
galaxy correlation function on scales larger than thosesichn
ered here. To understand how volume-dependent systenfiatic e
fects perturb correlation measurements and to make testseon
volume stability of statistical quantities it is necesstrycon-
sider a more complete statistical analysis that focuse®ndie

tional fluctuations (Sylos Labini et al., 2009alb,c,d).
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