Recent Talks

List of all the talks in the archive, sorted by date.


iKCRN5oHISI-thumbnail
Thursday July 21, 2011
Dr. Peter Weilbacher
Leibniz Institute for Astrophysics, Postdam, Germany

Abstract

The 2nd generation VLT instrument Multi Unit Spectroscopic Explorer(MUSE) is going to be an integral field spectrograph with wide field of view and high spatial sampling. It is currently being built by a European consortium to see first light end of 2012. I will describe instrumental properties, show some details of the optomechanical design, present the data processing, and give some examples for possible scientific use.


60jj8nMDvXY-thumbnail
Thursday July 21, 2011
Dr. Martín Lopez Corredoira
Instituto de Astrofísica de Canarias, Spain

Abstract

I will review some theoretical ideas in Cosmology different to the standard "Big Bang": the Quasi-steady State model, Plasma Cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Some open problems of Cosmology within the standard model will also be summarized.


FJhRSGkNXQU-thumbnail
Wednesday July 20, 2011
Dr. Miguel Ángel Sánchez Conde
Instituto de Astrofísica de Canarias, Spain

Abstract

What's the dark matter made of? Do we have any idea of the kind of particle that should constitute ~85% of the matter content of the Universe? In this talk, I will briefly explain the properties that such a particle might have and will present some of the proposed candidates that arise from beyond the Standard Model of particle physics. Next stop will be to give an overview of the present status of dark matter searches, mainly focusing on gamma-rays. There is a tremendous effort currently ongoing that involves an impressive battery of experiments both at the lab and observatories around the world.
In a second part,  the importance of N-body cosmological simulations for the understanding of how dark matter halos form and evolve from the early Universe will be discussed. At this point, some problems arise that it's worth mentioning and that will hopefully lead to debate.

OVVNrNvjiIM-thumbnail
Tuesday July 19, 2011
Dr. Sergio Simón Díaz, Dr. Jorge García Rojas
Instituto de Astrofísica de Canarias
Instituto de Astrofísica de Canarias, Spain

Abstract

We have selected the Galactic HII region M43, a close-by apparently spherical nebula ionized by a single star (HD37061, B0.5V) to investigate several topics of recent interest in the field of HII regions and massive stars. We perform a combined, comprehensive study
of the nebula and its ionizing star by using as many observational constraints as possible. For this study we collected a set of high-quality observations, including the optical spectrum of HD3706, along with nebular optical imaging and long-slit spatially resolved spectroscopy. On the one hand, we have carried out a quantitative spectroscopic analysis of the ionizing star from which we have determined the stellar parameters of HD37061 and the total number of ionizing photons emitted by the star; on the other hand, we have done a
empirical analysis of the nebular images and spectroscopy from which we have find observational evidence of scattered light from the Huygens region (the brightest part of the Orion nebula) in the M43 region. We show the importance of an adequate correction of this scattered light in both the imagery and spectroscopic observations of M43 in accurately determining the total nebular Halpha luminosity, the nebular physical
conditions. and chemical abundances. We have computed total abundances for three of the analyzed elements (O, S, and N), directly from
observable ions (no ionization correction factors are needed). The comparison of these abundances with those derived from the spectrum of the Orion nebula indicates the importance of the atomic data and, specially in the case of M42, the considered ionization correction factors.


cn--qzhXByo-thumbnail
Tuesday July 19, 2011
Dr. Ricardo Tanausu Génova Santos
Instituto de Astrofísica de Canarias, Spain

Abstract

In the first part of this talk I will present a historical review of the CMB observations, one of the most powerful cosmological probes. Following the first talk of this series, where Jose Alberto described the basic parameters that define the standard cosmological model, I will here summarize the constraints to these parameters that have been derived from these observations. I will also describe the current challenges in this field, in particular the detection of the inflation's B-mode signal through CMB polarization observations, as well as the experiments that have been developed worldwide to this aim, including IAC's QUIJOTE. In the second part, I will focus on the so-called ``missing baryon problem'', i.e. the fact that the half of the expected baryon content of the local universe remains yet undetected. I will describe the theoretical studies that provide hints on where these baryons could be located, and the observational efforts that have been undertaken in this regard.


DhV4yPXuDRw-thumbnail
Monday July 18, 2011
Dr. José Alberto Rubiño
Instituto de Astrofísica de Canarias, Spain

Abstract

This is the first talk of a series of four aimed to discuss about Cosmology. Here, I will review the basic concepts of the standard cosmological model, which will be further discussed in the following talks, as well as the observational evidence in support of the Lambda-CDM model. As the subject is very broad, I will focus the discussion on topics related with inflation, dark matter and dark energy. Moreover, I will mainly discuss large scale structure probes.


dGu299TXmII-thumbnail
Thursday July 14, 2011
Dr. Anna Pasquali
Astronomisches Rechen-Institut, Heidelberg, Germany

Abstract

It has been thirty years since the seminal work of Alan Dressler on the density-morphology relation, which established environment as a driving mechanism for galaxy formation and evolution. In the following three decades, we have learned that both the intrinsic processes (nature) and environment (nurture) contribute towards shaping the galaxy populations, and the connection between these two still remains an open question. I will summarize recent results on the interplay between environment and galaxy evolution, obtained from the SDSS DR4 galaxy groups catalogue (Yang et al. 2007) by comparing the properties of central and satellite galaxies as a function of their stellar mass and the dark matter mass of their
host halos.


3vHEQNzECFw-thumbnail
Thursday July 7, 2011
Prof. Mordecai-Mark Mac Low
Department of Astrophysics, American Museum of Natural History, New York, USA

Abstract

In this talk I consider two questions. First, I investigate the formation of molecular clouds from diffuse interstellar gas. It has been argued that the midplane pressure controls the fraction of molecular hydrogen present, and thus the star formation rate. Alternatively, I and others have suggested that the gravitational instability of the disk controls both. I present numerical results demonstrating that the observed correlations between midplane pressure, molecular hydrogen fraction, and star formation rate can be explained within the gravitational instability picture. Second, I discuss how ionization affects the formation of massive stars. Although most distinctive observables of massive stars can be traced back to their ionizing radiation, it does not appear to have a strong effect on their actual formation. Rather, I present simulations suggesting that stars only ionize large volumes after their accretion has already been throttled by gravitational fragmentation in the accretion flow. At the same time these models can explain many aspects of the observations of ultracompact H II regions.


1U_d2mqE11w-thumbnail
Thursday June 30, 2011
Prof. Scott Tremaine
Institute for Advanced Study, Univ. Princeton, USA

Abstract

The massive black holes found at the centers of most nearby galaxies including our own, are believed to be the ashes of the fuel that powered quasars early in the history of the universe. I will briefly review the astronomical evidence for these objects and then describe some of the exotic dynamical phenomena that originate in their vicinity, including hypervelocity stars, resonant relaxation, and warped and lopsided stellar disks.


zXmbTKWs3cY-thumbnail
Thursday June 23, 2011
Dr. Patrick Gaulme
Institut d'Astrophysique Spatiale; Université Paris Sud, Paris, France

Abstract

At the end of 2008, on ideas of teams from the Observatoire de la Côte d’Azur (OCA) and IAC, the CoRoT satellite observed the star HD 46375, known to host a non-transiting Saturn-mass exoplanet with a 3.023 day period. HD 46375 is the brightest star with a known close-in planet in the CoRoT accessible field of view. As such, it was targeted by the CoRoT additional program and observed in a CCD normally dedicated to the asteroseismology program, to obtain an ultra-precise photometric lightcurve and detect or place upper limits on the brightness of the planet. In addition, a ground-based support was simultaneously performed with the high-resolution NARVAL spectro-polarimeter to constrain the stellar atmospheric and magnetic properties. In this seminar, I will present the main results, in particular the stellar constrain we obtained thanks to the detection of the oscillation mode signature and the plausible detection of the planetary signal, which, if confirmed with future observations, would be the first detection of phase changes in the visible for a non-transiting planet.



Upcoming talks

  • UNDARK kick off
    Thursday October 10, 2024 - 9:15 GMT+1  (Aula)
  • TBD
    Dr. Nikki Arendse
    Thursday October 17, 2024 - 10:30 GMT+1  (Aula)

More upcoming talks

Recent Colloquia


Recent Talks